Skip to main content
Log in

Layer-Contacted Graphene-Like BN/Ultrathin Bi3O4Br Stacking for Boosting Photocatalytic Molecular Oxygen Activation

  • Research Article
  • Published:
Transactions of Tianjin University Aims and scope Submit manuscript

Abstract

Novel graphene-like boron nitride (BN)/Bi3O4Br photocatalysts have been controllably synthesized through a facile solvothermal method for the first time. Layer contact stacking between graphene-like BN and ultrathin Bi3O4Br was achieved with strong interaction. Dehalogenation is designed to harvest more visible light, and the ultrathin structure of Bi3O4Br is designed to accelerate charge transfer from inside to the surface. After graphene-like BN was engineered, photocatalytic performance greatly improved under visible light irradiation. Graphene-like BN can act as a surface electron-withdrawing center and adsorption center, facilitating molecular oxygen activation. O2•− was determined to be the main active species during the degradation process through analyses of electron spin resonance and XPS valence band spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zhou JD, Zhu C, Zhou Y et al (2022) Composition and phase engineering of metal chalcogenides and phosphorous chalcogenides. Nat Mater. https://doi.org/10.1038/s41563-022-01291-5

    Article  Google Scholar 

  2. Wu SQ, Wang JB, Li QC et al (2021) Bi/BiOCl nanosheets enriched with oxygen vacancies to enhance ohotocatalytic CO2 reduction. Trans Tianjin Univ 27:155–164

    Article  Google Scholar 

  3. Li H, Zhang JC, Yu JG et al (2021) Ultra-thin carbon-doped Bi2WO6 nanosheets for enhanced photocatalytic CO2 reduction. Trans Tianjin Univ 27:338–347

    Article  Google Scholar 

  4. Wang P, Yang Y, Pan E et al (2022) Emerging phases of layered metal chalcogenides. Small 18:2105215

    Article  Google Scholar 

  5. Di J, Chen C, Zhu C et al (2021) Surface local polarization induced by bismuth-oxygen vacancy pairs tuning non-covalent interaction for CO2 photoreduction. Adv Energy Mater 11:2102389

    Article  Google Scholar 

  6. Du HX, Fan JX, Miao CL et al (2021) Recent advances in constructing interfacial active catalysts based on layered double hydroxides and their catalytic mechanisms. Trans Tianjin Univ 27:24–41

    Article  Google Scholar 

  7. Zhang XD, Xie Y et al (2013) Recent advances in free-standing two-dimensional crystals with atomic thickness: design, assembly and transfer strategies. Chem Soc Rev 42:8187–8199

    Article  Google Scholar 

  8. Han QT, Bai XW, Man ZQ et al (2019) Convincing synthesis of atomically thin, single-crystalline InVO4 sheets toward promoting highly selective and efficient solar conversion of CO2 into CO. J Am Chem Soc 141:4209–4213

    Article  Google Scholar 

  9. Mannix AJ, Zhou XF, Kiraly B et al (2015) Synthesis of borophenes: anisotropic, two-dimensional boron polymorphs. Science 350:1513–1516

    Article  Google Scholar 

  10. Shi M, Li GN, Li JM et al (2020) Intrinsic facet-dependent reactivity of well-defined BiOBr nanosheets on photocatalytic water splitting. Angew Chem Int Ed 59:6590–6595

    Article  Google Scholar 

  11. Tian N, Hu C, Wang JJ et al (2022) Layered bismuth-based photocatalysts. Coord Chem Rev 463:214515

    Article  Google Scholar 

  12. Meng JZ, Duan YY, Jing SJ et al (2022) Facet junction of BiOBr nanosheets boosting spatial charge separation for CO2 photoreduction. Nano Energy 92:106671

    Article  Google Scholar 

  13. Di J, Xia JX, Ji MX et al (2016) New insight of Ag quantum dots with the improved molecular oxygen activation ability for photocatalytic applications. Appl Catal B 188:376–387

    Article  Google Scholar 

  14. Luo ZS, Ye XY, Zhang SJ et al (2022) Unveiling the charge transfer dynamics steered by built-in electric fields in BiOBr photocatalysts. Nat Commun 13:2230

    Article  Google Scholar 

  15. Li J, Yu Y, Zhang LZ (2014) Bismuth oxyhalide nanomaterials: layered structures meet photocatalysis. Nanoscale 6:8473–8488

    Article  Google Scholar 

  16. Wu J, Li XD, Shi W et al (2018) Efficient visible-light-driven CO2 reduction mediated by defect-engineered BiOBr atomic layers. Angew Chem Int Ed 57:8719–8723

    Article  Google Scholar 

  17. Sun JJ, Li XY, Zhao QD et al (2021) Ultrathin nanoflake-assembled hierarchical BiOBr microflower with highly exposed 001 facets for efficient photocatalytic degradation of gaseous ortho-dichlorobenzene. Appl Catal B 281:119478

    Article  Google Scholar 

  18. Xu ML, Jiang XJ, Li JR et al (2021) Self-assembly of a 3D hollow BiOBr@Bi-MOF heterostructure with enhanced photocatalytic degradation of dyes. ACS Appl Mater Interfaces 13:56171–56180

    Article  Google Scholar 

  19. Cao X, Huang AJ, Liang C et al (2022) Engineering lattice disorder on a photocatalyst: photochromic BiOBr nanosheets enhance activation of aromatic C-H bonds via water oxidation. J Am Chem Soc 144:3386–3397

    Article  Google Scholar 

  20. Jin Y, Li F, Li T et al (2022) Enhanced internal electric field in S-doped BiOBr for intercalation, adsorption and degradation of ciprofloxacin by photoinitiation. Appl Catal B 302:120824

    Article  Google Scholar 

  21. Li H, Shang J, Ai ZH et al (2015) Efficient visible light nitrogen fixation with BiOBr nanosheets of oxygen vacancies on the exposed 001 facets. J Am Chem Soc 137:6393–6399

    Article  Google Scholar 

  22. Ye LQ, Jin XL, Liu C et al (2016) Thickness-ultrathin and bismuth-rich strategies for BiOBr to enhance photoreduction of CO2 into solar fuels. Appl Catal B 187:281–290

    Article  Google Scholar 

  23. Dai YT, Ren PJ, Li YR et al (2019) Solid base Bi24O31Br10(OH)δ with active lattice oxygen for the efficient photo-oxidation of primary alcohols to aldehydes. Angew Chem Int Ed 58:6265–6270

    Article  Google Scholar 

  24. Dong XA, Cui ZH, Shi X et al (2022) Insights into dynamic surface bromide sites in Bi4O5Br2 for sustainable N2 photofixation. Angew Chem Int Ed 61:e202200937

    Article  Google Scholar 

  25. Zheng XQ, Feng LP, Dou YW et al (2021) High carrier separation efficiency in morphology-controlled BiOBr/C schottky junctions for photocatalytic overall water splitting. ACS Nano 15:13209–13219

    Article  Google Scholar 

  26. Huang HW, Han X, Li XW et al (2015) Fabrication of multiple heterojunctions with tunable visible-light-active photocatalytic reactivity in BiOBr-BiOI full-range composites based on microstructure modulation and band structures. ACS Appl Mater Interfaces 7:482–492

    Article  Google Scholar 

  27. Di J, Chen C, Zhu C et al (2021) Cobalt nitride as a novel cocatalyst to boost photocatalytic CO2 reduction. Nano Energy 79:105429

    Article  Google Scholar 

  28. Di J, Xia JX, Chisholm MF et al (2019) Defect-tailoring mediated electron-hole separation in single-unit-cell Bi3O4Br nanosheets for boosting photocatalytic hydrogen evolution and nitrogen fixation. Adv Mater 31:1807576

    Article  Google Scholar 

  29. Di J, Chen C, Wu Y et al (2022) Polarized Cu–Bi site pairs for non-covalent to covalent interaction tuning towards N2 photoreduction. Adv Mater 34:2204959

    Article  Google Scholar 

  30. Di J, Song P, Zhu C et al (2020) Strain-engineering of Bi12O17Br2 nanotubes for boosting photocatalytic CO2 reduction. ACS Materials Letters 2:1025–1032

    Article  Google Scholar 

  31. Miro´ P, Audiffred M, Heine T, (2014) An atlas of two-dimensional materials. Chem Soc Rev 43:6537–6554

    Article  Google Scholar 

  32. Chen Y, Tan CL, Zhang H et al (2015) Two-dimensional graphene analogues for biomedical applications. Chem Soc Rev 44:2681–2701

    Article  Google Scholar 

  33. Xiong J, Zhu WS, Li HP et al (2015) Few-layered graphene-like boron nitride induced a remarkable adsorption capacity for dibenzothiophene in fuels. Green Chem 17:1647–1656

    Article  Google Scholar 

  34. Pakdel A, Bando Y, Golberg D (2014) Nano boron nitride flatland. Chem Soc Rev 43:934–959

    Article  Google Scholar 

  35. Di J, Xia JX, Ji MX et al (2016) Advanced photocatalytic performance of graphene-like BN modified BiOBr flower-like materials for the removal of pollutants and mechanism insight. Appl Catal B 183:254–262

    Article  Google Scholar 

  36. Liu D, Jiang ZF, Zhu CZ et al (2016) Graphene-analogue BN-modified microspherical BiOI photocatalysts driven by visible light. Dalton Trans 45:2505–2516

    Article  Google Scholar 

  37. Fu XL, Hu YF, Yang YG et al (2013) Ball milled h-BN: an efficient holes transfer promoter to enhance the photocatalytic performance of TiO2. J Hazard Mater 244–245:102–110

    Article  Google Scholar 

  38. Hou YD, Laursen AB, Zhang JS et al (2013) Layered nanojunctions for hydrogen-evolution catalysis. Angew Chem Int Ed 52:3621–3625

    Article  Google Scholar 

  39. Zheng Q, Cao YH, Huang NJ et al (2021) Selective exposure of BiOI oxygen-rich 110 facet induced by BN nanosheets for enhanced photocatalytic oxidation performance. Acta Phys -Chim Sin 37:2009063

    Google Scholar 

  40. Cao YH, Zhang RY, Zheng Q et al (2020) Dual functions of O-atoms in the g-C3N4/BO0.2N0.8 interface: oriented charge flow in-plane and separation within the interface to collectively promote photocatalytic molecular oxygen activation. ACS Appl Mater Interfaces 12:34432–34440

    Article  Google Scholar 

  41. Han QF, Zhang J, Wang X et al (2015) Preparing Bi12SiO20 crystals at low temperature through nontopotactic solid-state transformation and improving its photocatalytic activity by etching. J Mater Chem A 3:7413–7421

    Article  Google Scholar 

  42. Zhang G, Hu ZY, Sun M et al (2015) Formation of Bi2WO6 bipyramids with vacancy pairs for enhanced solar-driven photoactivity. Adv Funct Mater 25:3726–3734

    Article  Google Scholar 

  43. Wang P, Li X, Fang JL et al (2016) A facile synthesis of CdSe quantum dots-decorated anatase TiO2 with exposed 0 0 1 facets and its superior photocatalytic activity. Appl Catal B 181:838–847

    Article  Google Scholar 

  44. Di J, Xia JX, Ji MX, Wang B et al (2015) Carbon quantum dots modified BiOCl ultrathin nanosheets with enhanced molecular oxygen activation ability for broad spectrum photocatalytic properties and mechanism insight. ACS Appl Mater Interfaces 7:20111–20123

    Article  Google Scholar 

  45. Kang YY, Yang YQ, Yin LC et al (2015) An amorphous carbon nitride photocatalyst with greatly extended visible-light-responsive range for photocatalytic hydrogen generation. Adv Mater 27:4572–4577

    Article  Google Scholar 

  46. Di J, Xia JX, Ji MX et al (2015) The synergistic role of carbon quantum dots for the improved photocatalytic performance of Bi2MoO6. Nanoscale 7:11433–11443

    Article  Google Scholar 

  47. Liu PG, Huang ZX, Gao XP et al (2022) Synergy between palladium single atoms and nanoparticles via hydrogen spillover for enhancing CO2 photoreduction to CH4. Adv Mater 34:2200057

    Article  Google Scholar 

  48. Lin B, Ma BW, Chen JG et al (2022) Sea-urchin-like ReS2 nanosheets with charge edge-collection effect as a novel cocatalyst for high-efficiency photocatalytic H2 evolution. Chin Chem Lett 33:943–947

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Fundamental Research Funds for the Central Universities (No. 30922010302) and the Start-Up Grant from Nanjing University of Science and Technology (AE89991/397).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Di or Jiexiang Xia.

Ethics declarations

Conflict of interests

The authors declare that there is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 853 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di, J., Li, Y., Zhang, Y. et al. Layer-Contacted Graphene-Like BN/Ultrathin Bi3O4Br Stacking for Boosting Photocatalytic Molecular Oxygen Activation. Trans. Tianjin Univ. 29, 235–245 (2023). https://doi.org/10.1007/s12209-022-00344-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12209-022-00344-9

Keywords

Navigation