Skip to main content
Log in

Non-Halogenated Solvent-Processed High-Efficiency Polymer Solar Cells: the Role of Diphenyl Ether in Morphology, Light-Trapping, Transport Properties

  • Research Article
  • Published:
Transactions of Tianjin University Aims and scope Submit manuscript

Abstract

There is an urgent need to use green non-halogenated solvents to prepare polymer solar cells (PSCs) for industrialization. It is time-consuming but necessary to find a suitable non-halogenated solvent/additive combination for a given donor:acceptor materials system. In this research, we report a non-halogenated binary solvent system toluene/diphenyl ether (DPE) for the PBDTT-DTffBT:PC71BM and PM6:Y6 blending systems that exhibit comparable power conversion efficiency (PCE) to that of devices prepared with halogenated solvents. The nanoscale morphology indicates that blending film processed solely with toluene has poor phase segregation and a rough surface, which hinders charge separation and interfacial contact. Besides, the total absorption spectra revealed significant light-trapping losses in the toluene-processed solar cells, resulting in low photocurrent generation. DPE incorporation addresses these issues and significantly improves the short-circuit current density and fill factor. Moreover, non-halogen solvent-processed devices exhibit high hole mobility and low transporting impedance properties. The present study enriches the families of eco-friendly, high-efficiency PSCs fabricated using non-halogenated solvents.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cheng P, Li G, Zhan XW et al (2018) Next-generation organic photovoltaics based on non-fullerene acceptors. Nat Photonics 12(3):131–142

    Article  Google Scholar 

  2. Qin F, Wang W, Sun LL et al (2020) Robust metal ion-chelated polymer interfacial layer for ultraflexible non-fullerene organic solar cells. Nat Commun 11(1):4508

    Article  Google Scholar 

  3. Xia YQ, Wang C, Dong B et al (2021) Molecular doping inhibits charge trapping in low-temperature-processed ZnO toward flexible organic solar cells. ACS Appl Mater Inter 13(12):14423–14432

    Article  Google Scholar 

  4. Zhang M, Zhu L, Zhou GQ et al (2021) Single-layered organic photovoltaics with double cascading charge transport pathways: 18% efficiencies. Nat Commun 12(1):309

    Article  Google Scholar 

  5. Bao SN, Yang H, Fan HY et al (2021) Volatilizable solid additive-assisted treatment enables organic solar cells with efficiency over 18.8% and fill factor exceeding 80%. Adv Mater 33(48):2105301

    Article  Google Scholar 

  6. Li C, Zhou JD, Song JL et al (2021) Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nat Energy 6(6):605–613

    Article  Google Scholar 

  7. Wen SP, Wang C, Ma PF et al (2015) Synthesis and photovoltaic properties of dithieno[3, 2-b: 2’, 3’-d] silole-based conjugated copolymers. J Mater Chem A 3(26):13794–13800

    Article  Google Scholar 

  8. Wang C, Li C, Wen SP et al (2017) Combining plasmonic trap filling and optical backscattering for highly efficient third generation solar cells. J Mater Chem A 5(8):3995–4002

    Article  Google Scholar 

  9. Yuan J, Zhang YQ, Zhou LY et al (2019) Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 3(4):1140–1151

    Article  Google Scholar 

  10. Chueh CC, Yao K, Yip HL et al (2013) Non-halogenated solvents for environmentally friendly processing of high-performance bulk-heterojunction polymer solar cells. Energy Environ Sci 6(11):3241

    Article  Google Scholar 

  11. Tsai PT, Tsai CY, Wang CM et al (2014) High-efficiency polymer solar cells by blade coating in chlorine-free solvents. Org Electron 15(4):893–903

    Article  Google Scholar 

  12. Zhao JB, Li YK, Yang GF et al (2016) Efficient organic solar cells processed from hydrocarbon solvents. Nat Energy 1:15027

    Article  Google Scholar 

  13. Chang JH, Wang HF, Lin WC et al (2014) Efficient inverted quasi-bilayer organic solar cells fabricated by using non-halogenated solvent processes. J Mater Chem A 2(33):13398–13406

    Article  Google Scholar 

  14. Xu XP, Yu LY, Yan H et al (2020) Highly efficient non-fullerene organic solar cells enabled by a delayed processing method using a non-halogenated solvent. Energy Environ Sci 13(11):4381–4388

    Article  Google Scholar 

  15. Yuan D, Qin GM, Zhang LJ et al (2021) Delicately controlled polymer orientation for high-performance non-fullerene solar cells with halogen-free solvent processing. ACS Appl Mater Inter 13(48):57654–57663

    Article  Google Scholar 

  16. Du BC, Ma YL, Guo CH et al (2021) Hot-casting boosts efficiency of halogen-free solvent processed non-fullerene organic solar cells. Adv Funct Mater 31(45):2105794

    Article  Google Scholar 

  17. Wang N, Chen Z, Wei W et al (2013) Fluorinated benzothiadiazole-based conjugated polymers for high-performance polymer solar cells without any processing additives or post-treatments. J Am Chem Soc 135(45):17060–17068

    Article  Google Scholar 

  18. Ye L, Zhang SQ, Huo LJ et al (2014) Molecular design toward highly efficient photovoltaic polymers based on two-dimensional conjugated benzodithiophene. Acc Chem Res 47(5):1595–1603

    Article  Google Scholar 

  19. Cui CH, Guo X, Min J et al (2015) High-performance organic solar cells based on a small molecule with alkylthio-thienyl-conjugated side chains without extra treatments. Adv Mater 27(45):7469–7475

    Article  Google Scholar 

  20. Wang C, Li C, Wen SP et al (2017) Enhanced photovoltaic performance of tetrazine-based small molecules with conjugated side chains. ACS Sust Chem Eng 5(10):8684–8692

    Article  Google Scholar 

  21. Guérette M, Najari A, Maltais J et al (2016) New processable phenanthridinone-based polymers for organic solar cell applications. Adv Energy Mater 6(9):1502094

    Article  Google Scholar 

  22. Wu QH, Zhao DL, Schneider AM et al (2016) Covalently bound clusters of alpha-substituted PDI–rival electron acceptors to fullerene for organic solar cells. J Am Chem Soc 138(23):7248–7251

    Article  Google Scholar 

  23. Xiao JY, Jia XE, Duan CH et al (2021) Surpassing 13% efficiency for polythiophene organic solar cells processed from nonhalogenated solvent. Adv Mater 33(25):e2008158

    Article  Google Scholar 

  24. Wang JX, Xiao MJ, Chen WC et al (2014) Extending π-conjugation system with benzene: an effective method to improve the properties of benzodithiophene-based polymer for highly efficient organic solar cells. Macromolecules 47(22):7823–7830

    Article  Google Scholar 

  25. Cui W, Li F, Zhu TT et al (2019) 1 V high open-circuit voltage fluorinated alkoxybiphenyl side-chained benzodithiophene based photovoltaic polymers. Synth Met 257:116182

    Article  Google Scholar 

  26. Min J, Luponosov YN, Gasparini N et al (2015) Effects of alkyl terminal chains on morphology, charge generation, transport, and recombination mechanisms in solution-processed small molecule bulk heterojunction solar cells. Adv Energy Mater 5(17):1500386

    Article  Google Scholar 

  27. Wang C, Li C, MacKenzie RCI et al (2018) Polyelectrolyte interlayers with a broad processing window for high efficiency inverted organic solar cells towards mass production. J Mater Chem A 6(36):17662–17670

    Article  Google Scholar 

  28. Zhao WC, Ye L, Zhang SQ et al (2015) A universal halogen-free solvent system for highly efficient polymer solar cells. J Mater Chem A 3(24):12723–12729

    Article  Google Scholar 

  29. Kang Q, Yang B, Xu Y et al (2018) Printable MoOx anode interlayers for organic solar cells. Adv Mater 30(35):1801718

    Article  Google Scholar 

  30. Li XH, Choy WCH, Huo LJ et al (2012) Dual plasmonic nanostructures for high performance inverted organic solar cells. Adv Mater 24(22):3046–3052

    Article  Google Scholar 

  31. Park SH, Roy A, Beaupré S et al (2009) Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat Photonics 3(5):297–302

    Article  Google Scholar 

  32. Cowan SR, Roy A, Heeger AJ (2010) Recombination in polymer-fullerene bulk heterojunction solar cells. Phys Rev B 82(24):245207

    Article  Google Scholar 

  33. Long GK, Wan XJ, Kan B et al (2014) Impact of the electron-transport layer on the performance of solution-processed small-molecule organic solar cells. Chemsuschem 7(8):2358–2364

    Article  Google Scholar 

  34. Yan H, Tang YB, Sui XY et al (2019) Increasing quantum efficiency of polymer solar cells with efficient exciton splitting and long carrier lifetime by molecular doping at heterojunctions. ACS Energy Lett 4(6):1356–1363

    Article  Google Scholar 

  35. Jiang K, Wei QY, Lai JYL et al (2019) Alkyl chain tuning of small molecule acceptors for efficient organic solar cells. Joule 3(12):3020–3033

    Article  Google Scholar 

  36. Wu JY, Lee J, Chin YC et al (2020) Exceptionally low charge trapping enables highly efficient organic bulk heterojunction solar cells. Energy Environ Sci 13(8):2422–2430

    Article  Google Scholar 

  37. Gasparini N, Paleti SHK, Bertrandie J et al (2020) Exploiting ternary blends for improved photostability in high-efficiency organic solar cells. ACS Energy Lett 5(5):1371–1379

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 52073115), the Project of Science and Technology Development Plan of Jilin Province (No. 20200201085JC), and China Postdoctoral Science Foundation (No. 2019M661208).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chen Wang or Shanpeng Wen.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Ding, X., Wang, G. et al. Non-Halogenated Solvent-Processed High-Efficiency Polymer Solar Cells: the Role of Diphenyl Ether in Morphology, Light-Trapping, Transport Properties. Trans. Tianjin Univ. 28, 423–432 (2022). https://doi.org/10.1007/s12209-022-00329-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12209-022-00329-8

Keywords

Navigation