Thiophene-Conjugated Porous C3N4 Nanosheets for Boosted Photocatalytic Nicotinamide Cofactor Regeneration to Facilitate Solar-to-Chemical Enzymatic Reactions


The low catalytic efficiency of redox-active cofactor photoregeneration severely limits the performance of photoenzymatic hybrid systems. Herein, we synthesized thiophene-conjugated porous C3N4 nanosheets (CN-ATCN) exhibiting boosted photoregeneration activity of nicotinamide cofactors (NADH and NADPH), which are the most common redox cofactors of oxidoreductases, with regeneration rates of 59.00 μM/min for NADH and 40.99 μM/min for NADPH, ~ 84.3 and 24.7 times higher than those of bulk g-C3N4, respectively. The thin nanosheet structure of CN-ATCN facilitates the exposure of active sites to reactants and favors the diffusion of reactants and products. Upon conjugation of a thiophene moiety into the carbon nitride framework, the optical and photoelectric properties of CN-ATCN were considerably enhanced by an extended π-conjugation system in the frameworks and molecular type II heterojunctions formed between the incorporated and non-incorporated portions of CN-ATCN. Upon coupling NAD(P)H photoregeneration reaction by CN-ATCN with NAD(P)H-dependent enzymatic systems, sustainable synthesis of L-tert-leucine and styrene oxide was achieved with rates of 964 and 14.9 μM/h, respectively.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Litman ZC, Wang YJ, Zhao HM et al (2018) Cooperative asymmetric reactions combining photocatalysis and enzymatic catalysis. Nature 560(7718):355–359

    Google Scholar 

  2. 2.

    Brown KA, Harris DF, Wilker MB et al (2016) Light-driven dinitrogen reduction catalyzed by a CdS: nitrogenase MoFe protein biohybrid. Science 352(6284):448–450

    Google Scholar 

  3. 3.

    Lee SH, Choi DS, Kuk SK et al (2018) Photobiocatalysis: activating redox enzymes by direct or indirect transfer of photoinduced electrons. Angew Chem Int Ed 57(27):7958–7985

    Google Scholar 

  4. 4.

    Kuk SK, Singh RK, Nam DH et al (2017) Photoelectrochemical reduction of carbon dioxide to methanol through a highly efficient enzyme cascade. Angew Chem Int Ed 56(14):3827–3832

    Google Scholar 

  5. 5.

    Yadav RK, Baeg JO, Oh GH et al (2012) A photocatalyst-enzyme coupled artificial photosynthesis system for solar energy in production of formic acid from CO2. J Am Chem Soc 134(28):11455–11461

    Google Scholar 

  6. 6.

    Yadav RK, Oh GH, Park NJ et al (2014) Highly selective solar-driven methanol from CO2 by a photocatalyst/biocatalyst integrated system. J Am Chem Soc 136(48):16728–16731

    Google Scholar 

  7. 7.

    Zhang LY, Can M, Ragsdale SW et al (2018) Fast and selective photoreduction of CO2 to CO catalyzed by a complex of carbon monoxide dehydrogenase, TiO2, and Ag nanoclusters. ACS Catal 8(4):2789–2795

    Google Scholar 

  8. 8.

    Chica B, Wu CH, Liu Y et al (2017) Balancing electron transfer rate and driving force for efficient photocatalytic hydrogen production in CdSe/CdS nanorod–[NiFe] hydrogenase assemblies. Energy Environ Sci 10(10):2245–2255

    Google Scholar 

  9. 9.

    Brown KA, Wilker MB, Boehm M et al (2012) Characterization of photochemical processes for H2 production by CdS nanorod–[FeFe] hydrogenase complexes. J Am Chem Soc 134(12):5627–5636

    Google Scholar 

  10. 10.

    Sokol KP, Robinson WE, Warnan J et al (2018) Bias-free photoelectrochemical water splitting with photosystem II on a dye-sensitized photoanode wired to hydrogenase. Nat Energy 3(11):944–951

    Google Scholar 

  11. 11.

    Zhang LY, Beaton SE, Carr SB et al (2018) Direct visible light activation of a surface cysteine-engineered [NiFe]-hydrogenase by silver nanoclusters. Energy Environ Sci 11(12):3342–3348

    Google Scholar 

  12. 12.

    Roth LE, Nguyen JC, Tezcan FA (2010) ATP- and iron-protein-independent activation of nitrogenase catalysis by light. J Am Chem Soc 132(39):13672–13674

    Google Scholar 

  13. 13.

    Lee M, Kim JH, Lee SH et al (2011) Biomimetic artificial photosynthesis by light-harvesting synthetic wood. ChemSusChem 4(5):581–586

    Google Scholar 

  14. 14.

    Lee SH, Choi DS, Pesic M et al (2017) Cofactor-free, direct photoactivation of enoate reductases for the asymmetric reduction of C=C bonds. Angew Chem 129(30):8807–8811

    Google Scholar 

  15. 15.

    Yoon J, Lee SH, Tieves F et al (2019) Light-harvesting dye-alginate hydrogel for solar-driven, sustainable biocatalysis of asymmetric hydrogenation. ACS Sustain Chem Eng 7(6):5632–5637

    Google Scholar 

  16. 16.

    Lee SH, Nam DH, Park CB (2009) Screening xanthene dyes for visible light-driven nicotinamide adenine dinucleotide regeneration and photoenzymatic synthesis. Adv Synth Catal 351(16):2589–2594

    Google Scholar 

  17. 17.

    Nam DH, Park CB (2012) Visible light-driven NADH regeneration sensitized by proflavine for biocatalysis. ChemBioChem 13(9):1278–1282

    Google Scholar 

  18. 18.

    Lee SH, Nam DH, Kim JH et al (2009) Eosin Y-sensitized artificial photosynthesis by highly efficient visible-light-driven regeneration of nicotinamide cofactor. ChemBioChem 10(10):1621–1624

    Google Scholar 

  19. 19.

    Lee JS, Nam DH, Kuk SK et al (2014) Near-infrared-light-driven artificial photosynthesis by nanobiocatalytic assemblies. Chem Eur J 20(13):3584–3588

    Google Scholar 

  20. 20.

    Lee SH, Ryu J, Nam DH et al (2011) Photoenzymatic synthesis through sustainable NADH regeneration by SiO2-supported quantum dots. Chem Commun 47(16):4643–4645

    Google Scholar 

  21. 21.

    Shi Q, Yang D, Jiang ZY et al (2006) Visible-light photocatalytic regeneration of NADH using P-doped TiO2 nanoparticles. J Mol Catal B Enzym 43(1–4):44–48

    Google Scholar 

  22. 22.

    Ryu J, Lee SH, Nam DH et al (2011) Rational design and engineering of quantum-dot-sensitized TiO2 nanotube arrays for artificial photosynthesis. Adv Mater 23(16):1883–1888

    Google Scholar 

  23. 23.

    Kim JH, Lee SH, Lee JS et al (2011) Zn-containing porphyrin as a biomimetic light-harvesting molecule for biocatalyzed artificial photosynthesis. Chem Commun 47(37):10227–10229

    Google Scholar 

  24. 24.

    Wang YZ, Sun J, Zhang HH et al (2018) Tetra(4-carboxyphenyl)porphyrin for efficient cofactor regeneration under visible light and its immobilization. Catal Sci Technol 8(10):2578–2587

    Google Scholar 

  25. 25.

    Ryu J, Nam DH, Lee SH et al (2014) Biocatalytic photosynthesis with water as an electron donor. Chem Eur J 20(38):12020–12025

    Google Scholar 

  26. 26.

    Huang JH, Antonietti M, Liu J (2014) Bio-inspired carbon nitride mesoporous spheres for artificial photosynthesis: photocatalytic cofactor regeneration for sustainable enzymatic synthesis. J Mater Chem A 2(21):7686–7693

    Google Scholar 

  27. 27.

    Liu J, Antonietti M (2013) Bio-inspired NADH regeneration by carbon nitride photocatalysis using diatom templates. Energy Environ Sci 6(5):1486–1493

    Google Scholar 

  28. 28.

    Wang YQ, Shen SH (2020) Progress and prospects of non-metal doped graphitic carbon nitride for improved photocatalytic performances. Acta Phys-Chim Sin 36(3):1905080

    Google Scholar 

  29. 29.

    Li YR, Kong TT, Shen SH (2019) Artificial photosynthesis with polymeric carbon nitride: when meeting metal nanoparticles, single atoms, and molecular complexes. Small 15(32):1900772

    Google Scholar 

  30. 30.

    Khan MS, Zhang FK, Osada M et al (2019) Graphitic carbon nitride-based low-dimensional heterostructures for photocatalytic applications. Sol RRL:1900435

  31. 31.

    Zhao DM, Dong CL, Wang B et al (2019) Synergy of dopants and defects in graphitic carbon nitride with exceptionally modulated band structures for efficient photocatalytic oxygen evolution. Adv Mater 31(43):1903545

    Google Scholar 

  32. 32.

    Chen J, Dong CL, Zhao DM et al (2017) Molecular design of polymer heterojunctions for efficient solar-hydrogen conversion. Adv Mater 29(21):1606198

    Google Scholar 

  33. 33.

    Liu J, Huang JH, Zhou H et al (2014) Uniform graphitic carbon nitride nanorod for efficient photocatalytic hydrogen evolution and sustained photoenzymatic catalysis. ACS Appl Mater Interfaces 6(11):8434–8440

    Google Scholar 

  34. 34.

    Liu J, Cazelles R, Chen ZP et al (2014) The bioinspired construction of an ordered carbon nitride array for photocatalytic mediated enzymatic reduction. Phys Chem Chem Phys 16(28):14699–14705

    Google Scholar 

  35. 35.

    Son EJ, Lee YW, Ko JW et al (2019) Amorphous carbon nitride as a robust photocatalyst for biocatalytic solar-to-chemical conversion. ACS Sustain Chem Eng 7(2):2545–2552

    Google Scholar 

  36. 36.

    Yang D, Zou H, Wu Y et al (2017) Constructing quantum dots@flake graphitic carbon nitride isotype heterojunctions for enhanced visible-light-driven NADH regeneration and enzymatic hydrogenation. Ind Eng Chem Res 56:6247–6255

    Google Scholar 

  37. 37.

    Wu YZ, Ward-Bond J, Li DL et al (2018) g-C3N4@α-Fe2O3/C photocatalysts: synergistically intensified charge generation and charge transfer for NADH regeneration. ACS Catal 8(7):5664–5674

    Google Scholar 

  38. 38.

    Yang D, Zhang Y, Zhang S et al (2019) Coordination between electron transfer and molecule diffusion through a bioinspired amorphous titania nanoshell for photocatalytic nicotinamide cofactor regeneration. ACS Catal 9:11492–11501

    Google Scholar 

  39. 39.

    Yang D, Zhang Y, Zou H et al (2018) Phosphorus quantum dots-facilitated enrichment of electrons on g-C3N4 hollow tubes for visible-light-driven nicotinamide adenine dinucleotide regeneration. ACS Sustain Chem Eng 7:285–295

    Google Scholar 

  40. 40.

    Ong WJ, Tan LL, Ng YH et al (2016) Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem Rev 116(12):7159–7329

    Google Scholar 

  41. 41.

    Bommarius AS, Schwarm M, Drauz K (1998) Biocatalysis to amino acid-based chiral pharmaceuticals: examples and perspectives. J Mol Catal B Enzym 5(1–4):1–11

    Google Scholar 

  42. 42.

    Bloom JD, Dutia MD, Johnson BD et al (1992) Disodium (R, R)-5-[2-[[2-(3-chlorophenyl)-2-hydroxyethyl]amino]propyl]-1, 3-benzodioxole-2, 2-dicarboxylate (CL 316, 243). A potent.beta.-adrenergic agonist virtually specific for.beta.3 receptors. A promising antidiabetic and antiobesity agent. J Med Chem 35(16):3081–3084

    Google Scholar 

  43. 43.

    Ran JR, Ma TY, Gao GP et al (2015) Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic H2 production. Energy Environ Sci 8(12):3708–3717

    Google Scholar 

  44. 44.

    Liang QH, Li Z, Yu XL et al (2015) Macroscopic 3D porous graphitic carbon nitride monolith for enhanced photocatalytic hydrogen evolution. Adv Mater 27(31):4634–4639

    Google Scholar 

  45. 45.

    Ma TY, Tang YH, Dai S et al (2014) Proton-functionalized two-dimensional graphitic carbon nitride nanosheet: an excellent metal-/label-free biosensing platform. Small 10(12):2382–2389

    Google Scholar 

  46. 46.

    Fan LZ, Hu YS, Maier J et al (2007) High electroactivity of polyaniline in supercapacitors by using a hierarchically porous carbon monolith as a support. Adv Funct Mater 17(16):3083–3087

    Google Scholar 

  47. 47.

    Han Q, Wang B, Zhao Y et al (2015) A graphitic-C3N4 “seaweed” architecture for enhanced hydrogen evolution. Angew Chem Int Ed 54(39):11433–11437

    Google Scholar 

  48. 48.

    Kumru B, Antonietti M, Schmidt BVKJ (2017) Enhanced dispersibility of graphitic carbon nitride particles in aqueous and organic media via a one-pot grafting approach. Langmuir 33(38):9897–9906

    Google Scholar 

  49. 49.

    Wang XC, Maeda K, Thomas A et al (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8(1):76–80

    Google Scholar 

  50. 50.

    Galeotti G, de Marchi F, Taerum T et al (2019) Surface-mediated assembly, polymerization and degradation of thiophene-based monomers. Chem Sci 10(19):5167–5175

    Google Scholar 

  51. 51.

    Hollmann F, Schmid A, Steckhan E (2001) The first synthetic application of a monooxygenase employing indirect electrochemical NADH regeneration. Angew Chem Int Ed 40(1):169–171

    Google Scholar 

  52. 52.

    Zhang JS, Zhang MW, Lin S et al (2014) Molecular doping of carbon nitride photocatalysts with tunable bandgap and enhanced activity. J Catal 310:24–30

    Google Scholar 

  53. 53.

    Zheng DD, Pang CY, Liu YX et al (2015) Shell-engineering of hollow g-C3N4 nanospheres via copolymerization for photocatalytic hydrogen evolution. Chem Commun 51(47):9706–9709

    Google Scholar 

  54. 54.

    Kurumisawa Y, Higashino T, Nimura S et al (2019) Renaissance of fused porphyrins: substituted methylene-bridged thiophene-fused strategy for high-performance dye-sensitized solar cells. J Am Chem Soc 141(25):9910–9919

    Google Scholar 

  55. 55.

    Han Q, Wang B, Gao J et al (2016) Atomically thin mesoporous nanomesh of graphitic C3N4 for high-efficiency photocatalytic hydrogen evolution. ACS Nano 10(2):2745–2751

    Google Scholar 

  56. 56.

    Bai JW, Zhong X, Jiang S et al (2010) Graphene nanomesh. Nat Nanotechnol 5(3):190–194

    Google Scholar 

  57. 57.

    Chen XF, Jun YS, Takanabe K et al (2009) Ordered mesoporous SBA-15 type graphitic carbon nitride: a semiconductor host structure for photocatalytic hydrogen evolution with visible light. Chem Mater 21(18):4093–4095

    Google Scholar 

  58. 58.

    Ye MY, Zhao ZH, Hu ZF et al (2017) 0D/2D heterojunctions of vanadate quantum dots/graphitic carbon nitride nanosheets for enhanced visible-light-driven photocatalysis. Angew Chem Int Ed 56(29):8407–8411

    Google Scholar 

  59. 59.

    Xiao JD, Shang QC, Xiong YJ et al (2016) Boosting photocatalytic hydrogen production of a metal-organic framework decorated with platinum nanoparticles: the platinum location matters. Angew Chem Int Ed 55(32):9389–9393

    Google Scholar 

  60. 60.

    Li JS, Tian Y, Zhou YN et al (2020) Abiotic-biological hybrid systems for CO2 conversion to value-added chemicals and fuels. Trans Tianjin Univ 26(4):237–247

    Google Scholar 

  61. 61.

    Chen J, Zhao DM, Diao ZD et al (2015) Bifunctional modification of graphitic carbon nitride with MgFe2O4 for enhanced photocatalytic hydrogen generation. ACS Appl Mater Interfaces 7(33):18843–18848

    Google Scholar 

  62. 62.

    Franken T, Palkovits R (2015) Investigation of potassium doped mixed spinels CuxCo3−xO4 as catalysts for an efficient N2O decomposition in real reaction conditions. Appl Catal B: Environ 176–177:298–305

    Google Scholar 

  63. 63.

    Yamamoto M, Nakamura R, Kasaya T et al (2017) Rücktitelbild: spontaneous and widespread electricity generation in natural deep-sea hydrothermal fields (Angew Chem 21/2017). Angew Chem 129(21):6038

    Google Scholar 

  64. 64.

    Wolff CM, Frischmann PD, Schulze M et al (2018) All-in-one visible-light-driven water splitting by combining nanoparticulate and molecular co-catalysts on CdS nanorods. Nat Energy 3(10):862–869

    Google Scholar 

Download references


This research was supported by the National Key Research and Development Program of China (No. 2018YFA0901300) and the National Natural Science Foundation of China (No. NSFC 21621004).

Author information



Corresponding author

Correspondence to Hao Song.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2240 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Zong, Y., Zhou, Y. et al. Thiophene-Conjugated Porous C3N4 Nanosheets for Boosted Photocatalytic Nicotinamide Cofactor Regeneration to Facilitate Solar-to-Chemical Enzymatic Reactions. Trans. Tianjin Univ. (2020).

Download citation


  • Photobiocatalytic hybrid system
  • Photocatalytic NAD(P)H regeneration
  • Graphitic carbon nitride
  • Solar-to-chemical conversion