Skip to main content
Log in

Preparation of Three-Dimensional Carbon Network Reinforced Epoxy Composites and Their Thermal Conductivity

  • Research Article
  • Published:
Transactions of Tianjin University Aims and scope Submit manuscript

Abstract

As a thermosetting resin with excellent properties, epoxy resin is used in many areas such as electronics, transportation, aerospace, and other fields. However, its relatively low thermal conductivity limits its wide application in more demanding fields. Here, a three-dimensional carbon (3DC) network was prepared through NaCl template-assisted in situ chemical vapor deposition (CVD) and used to reinforce epoxy resin for enhancing its thermal conductivity. The 3DC was prepared with a molar ratio of sodium atom to carbon atom of 100:20, and argon atmosphere in CVD led to an optimal improvement in the thermal conductivity of epoxy resin. The thermal conductivity of epoxy resin increased by 18% when the filling content was 3 wt.% of 3DC network because of the high contact area, uniform dispersion, and enhanced formation of conductive paths with epoxy resin. As the amount of 3DC addition increases, the thermal conductivity of composites also increases. As an innovative exploration, the work presented in this paper is of great significance for the thermal conductivity application of epoxy resin in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Yang XT, Liang CB, Ma TB et al (2018) A review on thermally conductive polymeric composites: classification, measurement, model and equations, mechanism and fabrication methods. Adv Compos Hybrid Mater 1(2):207–230

    Article  Google Scholar 

  2. Tong YJ, Zhang BW, Li CQ et al (2019) Copolymerization of acrylonitrile/1-vinyl-3-ethylimidazolium bromide and rheological, thermal properties of the copolymer. Trans Tianjin Univ 25(1):85–90

    Article  Google Scholar 

  3. Zhao DM, Liu BS (2015) Local bifurcation analysis of parameter-excited resonance of pipes under thermal load. Trans Tianjin Univ 21(4):324–332

    Article  Google Scholar 

  4. Yang XT, Guo YQ, Luo X et al (2018) Self-healing, recoverable epoxy elastomers and their composites with desirable thermal conductivities by incorporating BN fillers via in situ polymerization. Compos Sci Technol 164:59–64

    Article  Google Scholar 

  5. Wang XY, Zhang ZS, Bai T et al (2009) PF/EP/nano-SiO2 composite paint for resistor. Trans Tianjin Univ 15(4):283–287

    Article  Google Scholar 

  6. Ruan KP, Guo YQ, Tang YS et al (2018) Improved thermal conductivities in polystyrene nanocomposites by incorporating thermal reduced graphene oxide via electrospinning-hot press technique. Compos Commun 10:68–72

    Article  Google Scholar 

  7. Liu ZD, Chen YP, Dai W et al (2018) Anisotropic thermal conductive properties of cigarette filter-templated graphene/epoxy composites. RSC Adv 8(2):1065–1070

    Article  Google Scholar 

  8. Song N, Hou XS, Chen L et al (2017) A green plastic constructed from cellulose and functionalized graphene with high thermal conductivity. ACS Appl Mater Interfaces 9(21):17914–17922

    Article  Google Scholar 

  9. Su Z, Wang H, Ye XZ et al (2018) Anisotropic thermally conductive flexible polymer composites filled with hexagonal born nitride (h-BN) platelets and ammine carbon nanotubes (CNT-NH2): effects of the filler distribution and orientation. Compos Part A: Appl Sci Manuf 109:402–412

    Article  Google Scholar 

  10. Yuan C, Duan B, Li L et al (2015) Thermal conductivity of polymer-based composites with magnetic aligned hexagonal boron nitride platelets. ACS Appl Mater Interfaces 7(23):13000–13006

    Article  Google Scholar 

  11. Hu MC, Feng JY, Ng KM (2015) Thermally conductive PP/AlN composites with a 3-D segregated structure. Compos Sci Technol 110:26–34

    Article  Google Scholar 

  12. Kim K, Kim J (2016) Core-shell structured BN/PPS composite film for high thermal conductivity with low filler concentration. Compos Sci Technol 134:209–216

    Article  Google Scholar 

  13. Pradhan B, Srivastava SK (2014) Synergistic effect of three-dimensional multi-walled carbon nanotube-graphene nanofiller in enhancing the mechanical and thermal properties of high-performance silicone rubber. Polym Int 63(7):1219–1228

    Article  Google Scholar 

  14. Shao LB, Shi LY, Li XH et al (2016) Synergistic effect of BN and graphene nanosheets in 3D framework on the enhancement of thermal conductive properties of polymeric composites. Compos Sci Technol 135:83–91

    Article  Google Scholar 

  15. Yang SQ, Li WZ, Bai SB et al (2018) High-performance thermal and electrical conductive composites from multilayer plastic packaging waste and expanded graphite. J Mater Chem C 6(41):11209–11218

    Article  Google Scholar 

  16. Chen J, Huang XY, Zhu YK et al (2017) Cellulose nanofiber supported 3D interconnected BN nanosheets for epoxy nanocomposites with ultrahigh thermal management capability. Adv Funct Mater 27(5):1604754

    Article  Google Scholar 

  17. Wang F, Wang HY, Mao J (2019) Aligned-graphene composites: a review. J Mater Sci 54(1):36–61

    Article  Google Scholar 

  18. Chen HY, Ginzburg VV, Yang J et al (2016) Thermal conductivity of polymer-based composites: fundamentals and applications. Prog Polym Sci 59:41–85

    Article  Google Scholar 

  19. Shahil KMF, Balandin AA (2012) Graphene–multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Lett 12(2):861–867

    Article  Google Scholar 

  20. Gu JW, Meng XD, Tang YS et al (2017) Hexagonal boron nitride/polymethyl-vinyl siloxane rubber dielectric thermally conductive composites with ideal thermal stabilities. Compos Part A: Appl Sci Manuf 92:27–32

    Article  Google Scholar 

  21. Jang I, Shin KH, Yang I et al (2017) Enhancement of thermal conductivity of BN/epoxy composite through surface modification with silane coupling agents. Colloids Surfaces A: Physicochem Eng Aspects 518:64–72

    Article  Google Scholar 

  22. Wang L, Qiu H, Liang CB et al (2019) Electromagnetic interference shielding MWCNT-Fe3O4@Ag/epoxy nanocomposites with satisfactory thermal conductivity and high thermal stability. Carbon 141:506–514

    Article  Google Scholar 

  23. Qin J, Zhu S, Feng C et al (2018) In-situ space-confined catalysis for fabricating 3D mesoporous graphene and their capacitive properties. Appl Surf Sci 433:568–574

    Article  Google Scholar 

  24. Zhang HM, Zhang GC, Tang M et al (2018) Synergistic effect of carbon nanotube and graphene nanoplates on the mechanical, electrical and electromagnetic interference shielding properties of polymer composites and polymer composite foams. Chem Eng J 353:381–393

    Article  Google Scholar 

  25. Qin J, Liu DY, Zhang X et al (2017) One-step synthesis of SnCo nanoconfined in hierarchical carbon nanostructures for lithium ion battery anode. Nanoscale 9(41):15856–15864

    Article  Google Scholar 

  26. Qin J, Wang TS, Liu DY et al (2018) A top-down strategy toward SnSb in-plane nanoconfined 3D N-doped porous graphene composite microspheres for high performance Na-ion battery anode. Adv Mater 30(9):1704670

    Article  Google Scholar 

  27. Yang L, Jiang CY, Guo SH et al (2016) Novel diamond films synthesis strategy: methanol and argon atmosphere by microwave plasma CVD method without hydrogen. Nanoscale Res Lett 11:415

    Article  Google Scholar 

  28. Hammerschmidt U, Hameury J, Strnad R et al (2015) Critical review of industrial techniques for thermal-conductivity measurements of thermal insulation materials. Int J Thermophys 36(7):1530–1544

    Article  Google Scholar 

  29. Chandrasekaran S, Seidel C, Schulte K (2013) Preparation and characterization of graphite nano-platelet (GNP)/epoxy nano-composite: mechanical, electrical and thermal properties. Eur Polym J 49(12):3878–3888

    Article  Google Scholar 

  30. Ganguli S, Roy AK, Anderson DP (2008) Improved thermal conductivity for chemically functionalized exfoliated graphite/epoxy composites. Carbon 46(5):806–817

    Article  Google Scholar 

  31. Shen X, Wang ZY, Wu Y et al (2016) Effect of functionalization on thermal conductivities of graphene/epoxy composites. Carbon 108:412–422

    Article  Google Scholar 

  32. Yang SY, Ma CCM, Teng CC et al (2010) Effect of functionalized carbon nanotubes on the thermal conductivity of epoxy composites. Carbon 48(3):592–603

    Article  Google Scholar 

  33. Shante VKS, Kirkpatrick S (1971) An introduction to percolation theory. Adv Phys 20(85):325–357

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Key Projects of Tianjin Natural Science Foundation (No. 16ZXCLGX00130).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Song, K., Zhang, H. et al. Preparation of Three-Dimensional Carbon Network Reinforced Epoxy Composites and Their Thermal Conductivity. Trans. Tianjin Univ. 26, 399–408 (2020). https://doi.org/10.1007/s12209-020-00250-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12209-020-00250-y

Keywords

Navigation