Skip to main content
Log in

Preparation of γ-Al2O3 via Hydrothermal Synthesis Using ρ-Al2O3 as Raw Material for Propane Dehydrogenation

  • Research Article
  • Published:
Transactions of Tianjin University Aims and scope Submit manuscript

Abstract

γ-Al2O3 was prepared by hydrothermal synthesis using ρ-Al2O3 and urea as raw materials. In this work, the effects of the molar ratio of CO(NH2)2/Al and reaction temperature were investigated, and a Pt–Sn–K/γ-Al2O3 catalyst was prepared. The ammonium aluminum carbonate hydroxide (AACH), γ-Al2O3, and Pt–Sn–K/γ-Al2O3 were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, N2 adsorption–desorption, thermogravimetry–differential thermal analysis, and NH3 temperature-programmed desorption techniques. The reactivity of Pt–Sn–K/γ-Al2O3 for propane dehydrogenation was tested in a micro-fixed-bed reactor. The results show that γ-Al2O3 with a specific surface area of 358.1 m2/g and pore volume of 0.96 cm3/g was obtained when the molar ratio of CO(NH2)2/Al was 3:1 and the reaction temperature was 140 °C. The alumina obtained by calcination of AACH has a higher specific surface area and larger pore volume than the industrial pseudo-boehmite does. The catalyst prepared from AACH as precursor showed high selectivity and conversion, which can reach 96.1% and 37.6%, respectively, for propane dehydrogenation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Huang F, Zheng Y, Cai GH et al (2010) A new synthetic procedure for ordered mesoporous γ-alumina with a large surface area. Script Mater 63(3):339–342

    Article  Google Scholar 

  2. Byrd AJ, Gupta RB (2010) Stability of cerium-modified γ-alumina catalyst support in supercritical water. Appl Catal A-Gen 381(1–2):177–182

    Article  Google Scholar 

  3. Lafficher R, Digne M, Salvatori F et al (2017) Ammonium aluminium carbonate hydroxide NH4Al(OH)2CO3 as an alternative route for alumina preparation: comparison with the Classical boehmite precursor. Powder Technol 320:565–573

    Article  Google Scholar 

  4. Zhang YW, Zhou YM, Shi JJ et al (2014) Comparative study of bimetallic Pt-Sn catalysts supported on different supports for propane dehydrogenation. J Mol Catal A Chem 381:138–147

    Article  Google Scholar 

  5. Ma CC, Zhou XX, Xu X et al (2001) Synthesis and thermal decomposition of ammonium aluminum carbonate hydroxide (AACH). Mater Chem Phys 72(3):374–379

    Article  Google Scholar 

  6. Lafficher R, Digne M, Salvatori F et al (2017) Development of new alumina precipitation routes for catalysis applications. J Cryst Growth 468:526–530

    Article  Google Scholar 

  7. Fuliang Z, Yanshuang M, Dajian W (2015) Effect of europium ion on pseudoboehmite phase transition and microstructure. Rare Metal Mat Eng 44(8):1879–1882

    Article  Google Scholar 

  8. Zhang LL, Wu YS, Zhang LN et al (2016) Synthesis and characterization of mesoporous alumina with high specific area via coprecipitation method. Vacuum 133:1–6

    Article  Google Scholar 

  9. Kim JS, Song HJ, Ko SK et al (2010) Quercetin-3-O-β-d-glucuronopyranoside (QGC)-induced HO-1 expression through ERK and PI3K activation in cultured Feline esophageal epithelial cells. Fitoterapia 81(2):85–92

    Article  Google Scholar 

  10. Huang BY, Bartholomew CH, Woodfield BF (2013) Facile structure-controlled synthesis of mesoporous γ-alumina: effects of alcohols in precursor formation and calcination. Micropor Mesopor Mat 177:37–46

    Article  Google Scholar 

  11. Zhang K, Li CM, Yu J et al (2017) Synthesis of texture-excellent mesoporous alumina using PEG1000 as structure-directing agent. Chin J Chem Eng 25(1):137–141

    Article  Google Scholar 

  12. Shi Y, Li XR, Rong X et al (2017) Influence of support on the catalytic properties of Pt–Sn–K/θ-Al2O3 for propane dehydrogenation. RSC Adv 7(32):19841–19848

    Article  Google Scholar 

  13. Yuan L, Liu ZL, Hou XH et al (2019) Fibrous ZrO2-mullite porous ceramics fabricated by a hydratable alumina based aqueous gel-casting process. Ceram Int 45(7):8824–8831

    Article  Google Scholar 

  14. Yang LF, Guo MZ, Zhang F et al (2018) Controllable preparation of γ-alumina nanoparticles with bimodal pore size distribution in membrane dispersion microreactor. Particuology 41:1–10

    Article  Google Scholar 

  15. Afshar Taromi A, Kaliaguine S (2017) Synthesis of ordered mesoporous γ-alumina—effects of calcination conditions and polymeric template concentration. Micropor Mesopor Mat 248:179–191

    Article  Google Scholar 

  16. Mirzajany R, Alizadeh M, Rahimipour MR et al (2018) Seed-assisted hydrothermally synthesized AACH as the alumina precursors. Mater Chem Phys 221:188–196

    Article  Google Scholar 

  17. Guo HS, Li WF (2018) Effects of Al2O3 crystal types on morphologies, formation mechanisms of mullite and properties of porous mullite ceramics based on kyanite. J Eur Ceram Soc 38(2):679–686

    Article  Google Scholar 

  18. Hu XF, Liu YQ, Tang Z et al (2012) Fabrication of high-surface-area γ-alumina by thermal decomposition of AACH precursor using low-temperature solid-state reaction. Mater Res Bull 47(12):4271–4277

    Article  Google Scholar 

  19. Yang Y, Xu YY, Han BZ et al (2016) Effects of synthetic conditions on the textural structure of pseudo-boehmite. J Colloid Interface Sci 469:1–7

    Article  Google Scholar 

  20. Xu XY, Yu QQ, Lv Z et al (2018) Synthesis of high-surface-area rod-like alumina materials with enhanced Cr(VI) removal efficiency. Micropor Mesopor Mat 262:140–147

    Article  Google Scholar 

  21. Tregubenko VY, Veretelnikov KV, Vinichenko NV et al (2019) Effect of the indium precursor nature on Pt/Al2O3In-Cl reforming catalysts. Catal Today 329:102–107

    Article  Google Scholar 

  22. Pérez-López G, Ramírez-López R, Viveros T (2018) Acidic properties of Si- and Al- promoted TiO2 catalysts: effect on 2-propanol dehydration activity. Catal Today 305:182–191

    Article  Google Scholar 

  23. He SB, Sun CL, Bai ZW et al (2009) Dehydrogenation of long chain paraffins over supported Pt-Sn-K/Al2O3 catalysts: a study of the alumina support effect. Appl Catal A-Gen 356(1):88–98

    Article  Google Scholar 

  24. Zhang YW, Zhou YM, Sheng XL et al (2012) Effect of the competitive adsorbates on the catalytic performances of PtSnK/γ-Al2O3 catalyst for isobutane dehydrogenation. Fuel Process Technol 104:23–30

    Article  Google Scholar 

  25. Duan YZ, Zhou YM, Zhang YW et al (2011) Effect of sodium addition to PtSn/AlSBA-15 on the catalytic properties in propane dehydrogenation. Catal Lett 141(1):120–127

    Article  Google Scholar 

  26. Luo S, Wu N, Zhou B et al (2013) Effect of alumina support on the performance of Pt-Sn-K/γ-Al2O3 catalyst in the dehydrogenation of isobutane. J Fuel Chem Technol 41(12):1481–1487

    Article  Google Scholar 

  27. Jang EJ, Lee J, Jeong HY et al (2019) Controlling the acid-base properties of alumina for stable PtSn-based propane dehydrogenation catalysts. Appl Catal A Gen 572:1–8

    Article  Google Scholar 

  28. Yao Y, Zuo MG, Zhou HL et al (2018) One-pot preparation of Ni2P/γ-Al2O3 catalyst for dehydrogenation of propane to propylene. Chem Select 3(37):1053–10536

    Google Scholar 

  29. De León MA, De Los Santos C, Latrónica L et al (2014) High catalytic activity at low temperature in oxidative dehydrogenation of propane with Cr-Al pillared clay. Chem Eng J 241:336–343

    Article  Google Scholar 

  30. Li YX, Li JX, Yang X et al (2019) Preparation of CeO2-modified Mg(Al)O-supported Pt–Cu alloy catalysts derived from hydrotalcite-like precursors and their catalytic behavior for direct dehydrogenation of propane. Trans Tianjin Univ 25(2):169–184

    Article  MathSciNet  Google Scholar 

  31. Gao XQ, Lu WD, Hu SZ et al (2019) Rod-shaped porous alumina-supported Cr2O3 catalyst with low acidity for propane dehydrogenation. Chin J Catal 40(2):184–191

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by Hebei University of Technology and CNOOC Tianjin Chemical Research and Design Institute Co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaomin Dong or Xiaoyun Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Dong, X., Xia, J. et al. Preparation of γ-Al2O3 via Hydrothermal Synthesis Using ρ-Al2O3 as Raw Material for Propane Dehydrogenation. Trans. Tianjin Univ. 26, 362–372 (2020). https://doi.org/10.1007/s12209-019-00225-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12209-019-00225-8

Keywords

Navigation