Skip to main content
Log in

Dissipative Particle Dynamics Simulations of the Self-assembly Mechanisms of Fluorinated Ordered Mesoporous Carbon in the Aqueous Phase

  • Research Article
  • Published:
Transactions of Tianjin University Aims and scope Submit manuscript

Abstract

To clarify the preparation mechanisms of fluorinated ordered mesoporous carbon materials (FOMCs), the dissipative particle dynamics method was used to simulate the self-assembly process of the amphiphilic triblock poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) copolymer Pluronic F127 in the aqueous system. The self-assembly mechanisms in aqueous phase and the formation mechanisms of micropores and mesopores were investigated. It was found that the mesoporous structure of the FOMCs was formed by the hydrophobic segments of F127, while the pore wall was formed by both the hydrophilic segments and the carbon precursor in the system. The microporous structure on the pore wall was constructed by the carbon source in the hydrophilic segments’ spaces after the template was removed. Our findings could provide understanding and knowledge for the synthesis of mesoporous carbon by the self-assembly method on the mesoscopic scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Stein A, Wang ZY, Fierke MA (2009) Functionalization of porous carbon materials with designed pore architecture. Adv Mater 21(3):265–293

    Article  Google Scholar 

  2. Liang CD, Li ZJ, Dai S (2008) Mesoporous carbon materials: synthesis and modification. Angew Chem Int Edit 47(20):3696–3717

    Article  Google Scholar 

  3. Zhao X, Wang A, Yan J et al (2010) Synthesis and electrochemical performance of heteroatom-incorporated ordered mesoporous carbons. Chem Mater 22(19):5463–5473

    Article  Google Scholar 

  4. Xia Y, Yang Z, Mokaya R (2004) Mesostructured hollow spheres of graphitic N-doped carbon nanocast from spherical mesoporous silica. Phys Chem B 108(50):19293–19298

    Article  Google Scholar 

  5. Xia Y, Mokaya R (2005) Generalized and facile synthesis approach to N-doped highly graphitic mesoporous carbon materials. Chem Mater 17(6):1553–1560

    Article  Google Scholar 

  6. Fuertes AB, Centeno TA (2005) Mesoporous carbons with graphitic structures fabricated by using porous silica materials as templates and iron-impregnated polypyrrole as precursor. J Mater Chem 15(10):1079–1083

    Article  Google Scholar 

  7. Li W, Chen D, Li Z et al (2007) Nitrogen-containing carbon spheres with very large uniform mesopores: the superior electrode materials for EDLC in organic electrolyte. Carbon 45(9):1757–1763

    Article  Google Scholar 

  8. Fulvio PF, Mayes RT, Bauer JC (2012) “One-pot” synthesis of phosphorylated mesoporous carbon heterogeneous catalysts with tailored surface acidity. Catal Today 186(1):12–19

    Article  Google Scholar 

  9. Shin Y, Fryxell G, Um W et al (2007) Sulfur-functionalized mesoporous carbon. Adv Funct Mater 17(15):2897–2901

    Article  Google Scholar 

  10. Yu T, Deng Y, Wang L et al (2007) Ordered mesoporous nanocrystalline titanium-carbide/carbon composites from in situcarbothermal reduction. Adv Mater 19(17):2301–2306

    Article  Google Scholar 

  11. Liu R, Ren Y, Shi Y et al (2008) Controlled synthesis of ordered mesoporous C–TiO2 nanocomposites with crystalline titania frameworks from organic-inorganic-amphiphilic coassembly. Chem Mater 20(3):1140–1146

    Article  Google Scholar 

  12. Zhai Y, Dou Y, Liu X et al (2009) One-pot synthesis of magnetically separable ordered mesoporous carbon. J Mater Chem 19(20):3292–3300

    Article  Google Scholar 

  13. Yao J, Li L, Song H et al (2009) Synthesis of magnetically separable ordered mesoporous carbons from F127/[Ni(H2O)6](NO3)2/resorcinol-formaldehyde composites. Carbon 47(2):436–444

    Article  Google Scholar 

  14. Dou J, Zeng HC (2012) Preparation of Mo-embedded mesoporous carbon microspheres for Friedel–Crafts alkylation. J Phys Chem C 116(14):7767–7775

    Article  Google Scholar 

  15. Chen G, Zhang J, Yang S (2008) Fabrication of hydrophobic fluorinated amorphous carbon thin films by an electrochemical route. Electrochem Commun 10(1):7–11

    Article  Google Scholar 

  16. Kim BS, Shin S, Shin SJ et al (2011) Control of superhydrophilicity/superhydrophobicity using silicon nanowires via electroless etching method and fluorine carbon coatings. Langmuir 27(16):10148–10156

    Article  Google Scholar 

  17. Fulvio PF, Brown SS, Adcock J et al (2011) Low-temperature fluorination of soft-templated mesoporous carbons for a high-power lithium/carbon fluoride battery. Chem Mater 23(20):4420–4427

    Article  Google Scholar 

  18. Hu Q, Pang J, Jiang N et al (2005) Direct synthesis of palladium-containing mesoporous carbon. Microporous Mesoporous Mater 81(1–3):149–154

    Article  Google Scholar 

  19. Li J, Gu J, Li H et al (2010) Synthesis of highly ordered Fe-containing mesoporous carbon materials using soft templating routes. Microporous Mesoporous Mater 128(1–3):144–149

    Article  Google Scholar 

  20. Wan Y, Qian X, Jia N et al (2008) Direct triblock-copolymer-templating synthesis of highly ordered fluorinated mesoporous carbon. Chem Mater 20(3):1012–1018

    Article  Google Scholar 

  21. Huang Y, Cai H, Feng D et al (2008) One-step hydrothermal synthesis of ordered mesostructured carbonaceous monoliths with hierarchical porosities. Chem Commun 23:2641–2643

    Article  MathSciNet  Google Scholar 

  22. Hoogerbrugge PJ, Koelman JMVA (1992) Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys Lett 19(3):155–160

    Article  Google Scholar 

  23. Koelman JMVA, Hoogerbrugge PJ (1993) Dynamic simulations of hard-sphere suspensions under steady shear. Europhys Lett 21(3):363–368

    Article  Google Scholar 

  24. Groot RD, Warren PB (1997) Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J Chem Phys 107(11):4423–4435

    Article  Google Scholar 

  25. Moeendarbary E, Ng TY, Zangeneh M (2009) Dissipative particle dynamics: introduction, methodology and complex fluid applications: a review. Int J Appl Mech 1(4):737–763

    Article  Google Scholar 

  26. Saeki S, Kuwahara N, Nakata M et al (1976) Upper and lower critical solution temperatures in poly (ethylene glycol) solutions. Polymer 17(8):685–689

    Article  Google Scholar 

  27. Groot RD, Rabone KL (2001) Mesoscopic simulation of cell membrane damage, morphology change and rupture by nonionic surfactants. Biophys J 81(2):725–736

    Article  Google Scholar 

  28. van Vlimmeren BAC, Maurits M, Zvelindovsky AV et al (1999) Simulation of 3D mesoscale structure formation in concentrated aqueous solution of the triblock polymer surfactants (ethylene oxide)13(propylene oxide)30(ethylene oxide)13 and (propylene oxide)19(ethylene oxide)33(propylene oxide)19. Application of dynamic mean-field density functional theory. Macromolecules 32(3):646–656

    Article  Google Scholar 

  29. Guo SL, Hou TJ, Xu XJ (2002) Simulation of the phase behavior of the (EO)13(PO)30(EO)13(Pluronic L64)/water/p-xylene system using MesoDyn. J Phys Chem B 106(43):11397–11403

    Article  Google Scholar 

  30. Dong XQ, Zhao XS, Wang LT et al (2016) One-step synthesis of hydrophobic fluorinated ordered mesoporous carbon materials. RSC Adv 6(54):48870–48874

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (No. 21104035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingtao Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1749 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, N., Zhang, M., Dong, X. et al. Dissipative Particle Dynamics Simulations of the Self-assembly Mechanisms of Fluorinated Ordered Mesoporous Carbon in the Aqueous Phase. Trans. Tianjin Univ. 25, 559–566 (2019). https://doi.org/10.1007/s12209-019-00217-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12209-019-00217-8

Keywords

Navigation