Skip to main content
Log in

A Novel Method for Synthesizing p-Benzoquinone by Direct Catalytic Oxidation of Benzene with Hydrogen Peroxide over Copper-Doped TS-1

  • Research Article
  • Published:
Transactions of Tianjin University Aims and scope Submit manuscript

Abstract

Existing methods for synthesizing p-benzoquinone have drawbacks with respect to environmental protection, production scale, or industrial value. Therefore, it is imperative that a simple and environmentally friendly alternative be developed. The approach that involves preparing p-benzoquinone by the catalytic oxidation of benzene with hydrogen peroxide (H2O2) over copper-modified titanium silicalite-1 (Cu/TS-1) has a certain superiority due to its green synthesis and mild reaction conditions. In this study, Cu/TS-1 catalyst was prepared by the wet impregnation of TS-1 with an aqueous solution of Cu(NO3)2 and then characterized by X-ray diffraction, Fourier transform infrared spectroscopy, diffuse reflectance UV–Vis spectroscopy, scanning electron microscopy, inductively coupled plasma mass spectrometry, X-ray fluorescence, and analysis of the N2 adsorption–desorption isotherms. The results reveal that Cu species exist mainly in the form of amorphous CuO that is well dispersed on the surface of catalysts, with no major change in the molecular sieve framework. After optimizing the reaction conditions, a desirable p-benzoquinone selectivity (88.4%) and benzene conversion (18.3%) were obtained when the doping of Cu in Cu/TS-1 is 1.95 wt%. In addition, Cu/TS-1 can be conveniently regenerated, showing a slight decrease in catalytic capability after initial use, which then stabilizes in subsequent circulations. The satisfactory stability and low cost of synthesizing Cu/TS-1 give this method considerable potential for further industrialization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Qin C, Matsushima T, Fujihara T et al (2017) Multifunctional benzoquinone additive for efficient and stable planar perovskite solar cells. Adv Mater 29(4):1603808

    Article  Google Scholar 

  2. Stejskal J, Bober P, Trchova M et al (2018) Oxidation of pyrrole with p-benzoquinone to semiconducting products and their application in electrorheology. New J Chem 42(12):10167–10176

    Article  Google Scholar 

  3. Young SM, Chu-Xia D, Hoeijmarkers JH et al (2016) A mechanism for 1,4-benzoquinone-induced genotoxicity. Oncotarget 7(29):46433–46447

    Google Scholar 

  4. Mazzei L, Cianci M, Musiani F et al (2016) Inactivation of urease by 1,4-benzoquinone: chemistry at the protein surface. Dalton Trans 45(13):5455–5459

    Article  Google Scholar 

  5. Jonas K (1956) Process for the manufacture of benzoquinone. US 2,731,478. 1956-01-17

  6. Cason J (1948) Synthesis of benzoquinones by oxidation. Org React 1948(4):305–361

    Google Scholar 

  7. Reilly EL (1981) Oxidation of phenol to p-benzoquinone in acetonitrile/methanol cosolvent. US 4,257,968. 1981-03-24

  8. Maiti SK, Dinda S, Banerjee S et al (2008) Oxidoperoxidotungsten (VI) complexes with secondary hydroxamic acids: synthesis, structure and catalytic uses in highly efficient, selective and ecologically benign oxidation of olefins, alcohols, sulfides and amines with H2O2 as a terminal oxidant. Eur J Inorg Chem 12:2038–2051

    Article  Google Scholar 

  9. Tsuji T, Zaoputra AA, Hitomi Y et al (2017) Specific enhancement of catalytic activity by a dicopper core: selective hydroxylation of benzene to phenol with hydrogen peroxide. Angew Chem Int Ed 56(27):7779–7782

    Article  Google Scholar 

  10. Radel RJ, Sullivan JM, Hatfield JD (1982) Catalytic oxidation of hydroquinone to quinone using molecular oxygen. Ind Eng Chem Prod Res Dev 21(4):566–570

    Article  Google Scholar 

  11. Montilla F, Morallón E, Vázquez JL (2003) Electrochemical study of benzene on Pt of various surface structures in alkaline and acidic solutions. Electrochim Acta 47(27):4399–4406

    Article  Google Scholar 

  12. Li X, Li X, Tang S et al (2014) High selectivity of benzene electrochemical oxidation to p-benzoquinone on modified PbO2 electrode. Appl Surf Sci 311:357–361

    Article  Google Scholar 

  13. Montilla F, Huerta F, Morallon E et al (2000) Electrochemical behaviour of benzene on platinum electrodes. Electrochim Acta 45(25–26):4271–4277

    Article  Google Scholar 

  14. Taramasso M, Perego G, Notari B (1983) Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides. US 4,410,501. 1983-10-18

  15. Tanev PT, Chibwe M, Pinnavaia TJ (1994) Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds. Nature 368(6469):321

    Article  Google Scholar 

  16. Zhang T, Chen X, Chen G et al (2018) Synthesis of anatase-free nano-sized hierarchical TS-1 zeolites and their excellent catalytic performance in alkene epoxidation. J Mater Chem A 6(20):9473–9479

    Article  Google Scholar 

  17. Thangaraj A, Sivasanker S, Ratnasamy P (1991) Catalytic properties of crystalline titanium silicalites III. Ammoximation of cyclohexanone. J Catal 131(2):394–400

    Article  Google Scholar 

  18. Maspero F, Romano U (1994) Oxidation of alcohols with H2O2 catalyzed by titanium silicalite-1. J Catal 146(2):476–482

    Article  Google Scholar 

  19. Shul’pin GB, Kirillova MV, Sooknoi T et al (2008) Oxidation of saturated hydrocarbons to alkyl hydroperoxides by a ‘H2O2/titanosilicalite-1/NaOH/MeCN’ system. Catal Lett 123(1–2):135–141

    Article  Google Scholar 

  20. Juan Z, Dishun Z, Liyan Y et al (2010) Photocatalytic oxidation dibenzothiophene using TS-1. Chem Eng J 156(3):528–531

    Article  Google Scholar 

  21. Bonino F, Damin A, Ricchiardi G et al (2004) Ti-peroxo species in the TS-1/H2O2/H2O system. J Phys Chem B 108(11):3573–3583

    Article  Google Scholar 

  22. Bhaumik A, Mukherjee P, Kumar R (1998) Triphase catalysis over titanium–silicate molecular sieves under solvent-free conditions: I. Direct hydroxylation of benzene. Journal of Catalysis 178(1):101–107

    Article  Google Scholar 

  23. Hammond C, Forde MM, Ab Rahim MH et al (2012) Direct catalytic conversion of methane to methanol in an aqueous medium by using copper-promoted Fe-ZSM-5. Angew Chem Int Ed 51(21):5129–5133

    Article  Google Scholar 

  24. Liu Q, Zuo H, Wang T et al (2013) One-step hydrodeoxygenation of palm oil to isomerized hydrocarbon fuels over Ni supported on nano-sized SAPO-11 catalysts. Appl Catal A 468:68–74

    Article  Google Scholar 

  25. Wang L, Kong A, Chen B et al (2005) Direct synthesis, characterization of Cu-SBA-15 and its high catalytic activity in hydroxylation of phenol by H2O2. J Mol Catal A Chem 230(1–2):143–150

    Article  Google Scholar 

  26. Kondratenko EV, Cherian M, Baerns M et al (2005) Oxidative dehydrogenation of propane over V/MCM-41 catalysts: comparison of O2 and N2O as oxidants. J Catal 234(1):131–142

    Article  Google Scholar 

  27. Ito S, Kunai A, Okada H et al (1988) Direct conversion of benzene to hydroquinone. Cooperative action of copper (I) ion and dioxygen. J Org Chem 53(2):296–300

    Article  Google Scholar 

  28. Gao S, Yang H, Li J et al (2013) Method for preparing 1,4-benzoquinone by directly oxidizing benzene. CN 103,172,508 (A). 2013-06-26

  29. Kunai A, Wani T, Uehara Y et al (1989) Catalytic oxygenation of benzene. Catalyst design and its performance. Bull Chem Soc Jpn 62(8):2613–2617

    Article  Google Scholar 

  30. Cundy CS, Forrest JO, Plaisted RJ (2003) Some observations on the preparation and properties of colloidal silicalites. Part I: synthesis of colloidal silicalite-1 and titanosilicalite-1 (TS-1). Microporous Mesoporous Mater 66(2–3):143–156

    Article  Google Scholar 

  31. Chou B, Tsai JL, Cheng S (2001) Cu-substituted molecular sieves as liquid phase oxidation catalysts. Microporous Mesoporous Mater 48(1):309–317

    Article  Google Scholar 

  32. Kumar R, Mukherjee P, Bhaumik A (1999) Enhancement in the reaction rates in the hydroxylation of aromatics over TS-1/H2O2 under solvent-free triphase conditions. Catal Today 49(1–3):185–191

    Article  Google Scholar 

  33. Song Z, Feng X, Sheng N et al (2018) Propene epoxidation with H2 and O2 on Au/TS-1 catalyst: Cost-effective synthesis of small-sized mesoporous TS-1 and its unique performance. Catal Today. https://doi.org/10.1016/j.cattod.2018.04.068

    Article  Google Scholar 

  34. Sheng N, Liu Z, Song Z et al (2018) Enhanced stability for propene epoxidation with H2 and O2 over wormhole-like hierarchical TS-1 supported Au nanocatalyst. Chem Eng J. https://doi.org/10.1016/j.cej.2018.09.115

    Article  Google Scholar 

  35. Bengoa JF, Gallegos NG, Marchetti SG et al (1998) Influence of TS-1 structural properties and operation conditions on benzene catalytic oxidation with H2O2. Microporous Mesoporous Mater 24(4–6):163–172

    Article  Google Scholar 

  36. Zhang C, Lv W, Zhou G et al (2018) Vertically aligned lithiophilic CuO nanosheets on a Cu collector to stabilize lithium deposition for lithium metal batteries. Adv Energy Mater. https://doi.org/10.1002/aenm.201703404

    Article  Google Scholar 

  37. Ni S, Lv X, Li T et al (2013) A novel electrochemical activation effect induced morphology variation from massif-like CuxO to forest-like Cu2O nanostructure and the excellent electrochemical performance as anode for Li-ion battery. Electrochim Acta 96:253–260

    Article  Google Scholar 

  38. Yu J, Cao J, Du L et al (2018) Enhancement of diethyl malonate hydrogenation to 1, 3-propanediol using mesoporous Cu/SBA-15 as catalyst. Appl Catal A 555:161–170

    Article  Google Scholar 

  39. Wu G, Lin Z, Li L et al (2017) Experiments and kinetics of the epoxidation of allyl chloride with H2O2 over organic base treated TS-1 catalysts. Chem Eng J 320:1–10

    Article  Google Scholar 

  40. Feng X, Duan X, Yang J et al (2015) Au/uncalcined TS-1 catalysts for direct propene epoxidation with H2 and O2: effects of Si/Ti molar ratio and Au loading. Chem Eng J 278:234–239

    Article  Google Scholar 

  41. Ricchiardi G, Damin A, Bordiga S et al (2001) Vibrational structure of titanium silicate catalysts. A spectroscopic and theoretical study. J Am Chem Soc 123(46):11409–11419

    Article  Google Scholar 

  42. Kerton OJ, McMorn P, Bethell D et al (2005) Effect of structure of the redox molecular sieve TS-1 on the oxidation of phenol, crotyl alcohol and norbornylene. Phys Chem Chem Phys 7(13):2671–2678

    Article  Google Scholar 

  43. Thangaraj A, Kumar R, Mirajkar SP et al (1991) Catalytic properties of crystalline titanium silicalites I. Synthesis and characterization of titanium-rich zeolites with MFI structure. J Catal 130(1):1–8

    Article  Google Scholar 

  44. Du S, Chen X, Sun Q et al (2016) A non-chemically selective top-down approach towards the preparation of hierarchical TS-1 zeolites with improved oxidative desulfurization catalytic performance. Chem Commun 52(17):3580–3583

    Article  Google Scholar 

  45. Wang L, Gaudet JR, Li W et al (2013) Migration of Cu species in Cu/SAPO-34 during hydrothermal aging. J Catal 306:68–77

    Article  Google Scholar 

  46. Cao Y, Feng X, Xu H et al (2016) Novel promotional effect of yttrium on Cu-SAPO-34 monolith catalyst for selective catalytic reduction of NOx by NH3 (NH3-SCR). Catal Commun 76:33–36

    Article  Google Scholar 

  47. Prasad MR, Kamalakar G, Kulkarni SJ et al (2002) Synthesis of binaphthols over mesoporous molecular sieves. J Mol Catal A Chem 180(1–2):109–123

    Google Scholar 

  48. Feng X, Song Z, Liu Y et al (2018) Manipulating gold spatial location on titanium silicalite-1 to enhance the catalytic performance for direct propene epoxidation with H2 and O2. ACS Catal 8(11):10649–10657

    Article  Google Scholar 

  49. Feng X, Yang J, Duan X et al (2018) Enhanced catalytic performance for propene epoxidation with H2 and O2 over bimetallic Au–Ag/uncalcined titanium silicate-1 catalysts. ACS Catal 8(9):7799–7808

    Article  Google Scholar 

  50. Parida KM, Rath D, Dash SS (2010) Synthesis, characterization and catalytic activity of copper incorporated and immobilized mesoporous MCM-41 in the single step amination of benzene. J Mol Catal A Chem 318(1–2):85–93

    Article  Google Scholar 

  51. Bradu C, Frunza L, Mihalche N et al (2010) Removal of Reactive Black 5 azo dye from aqueous solutions by catalytic oxidation using CuO/Al2O3 and NiO/Al2O3. Appl Catal B 96(3–4):548–556

    Article  Google Scholar 

  52. Potekhin VV, Kulikova VA, Kochina EG et al (2011) Decomposition of hydrogen peroxide in protic and polar aprotic solvents on TS-1 heterogeneous catalyst. Russ J Appl Chem 84(7):1195

    Article  Google Scholar 

  53. Spinacé EV, Schuchardt U, Cardoso D (1999) Oxidation of hydrocarbons with peroxides catalyzed by chromium (III) and iron (III) incorporated in SAPO-37 framework. Appl Catal A 185(2):L193–L197

    Article  Google Scholar 

  54. Ito S, Yamasaki T, Okada H et al (1988) Oxidation of benzene to phenols with molecular oxygen promoted by copper (I) chloride. J Chem Soc Perkin Trans 2(3):285–293

    Article  Google Scholar 

  55. Balducci L, Bianchi D, Bortolo R et al (2003) Direct oxidation of benzene to phenol with hydrogen peroxide over a modified titanium silicalite. Angew Chem 115(40):5087–5090

    Article  Google Scholar 

  56. Hine J, Redding RW (1970) Equilibrium in the addition of hydrogen peroxide, water, and methanol to acetone. J Org Chem 35(8):2769–2772

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (No. 21376163).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aiwu Zeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Zhang, Q. & Zeng, A. A Novel Method for Synthesizing p-Benzoquinone by Direct Catalytic Oxidation of Benzene with Hydrogen Peroxide over Copper-Doped TS-1. Trans. Tianjin Univ. 25, 517–526 (2019). https://doi.org/10.1007/s12209-019-00216-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12209-019-00216-9

Keywords

Navigation