Skip to main content
Log in

Optimization of Co-precipitation Condition for Preparing Molybdenum-Based Sulfur-Resistant Methanation Catalysts

  • Research Article
  • Published:
Transactions of Tianjin University Aims and scope Submit manuscript

Abstract

In this study, the effects of ZrO2 carrier precursors, MoO3 loading, and washing treatment on the catalytic performance of MoO3/ZrO2 toward sulfur-resistant methanation were investigated. All the catalysts were prepared by co-precipitation method and further characterized by N2 adsorption–desorption, H2-temperature-programmed reduction, X-ray diffraction, Raman spectroscopy and transmission electron microscopy. The prepared MoO3/ZrO2 catalysts were tested in a continuous-flow pressurized fixed bed reactor for CO methanation. The results revealed that the carrier precursors, MoO3 loading, and washing treatment affected not only the crystalline phase of Mo species but also the grain size of ZrO2 carrier and consequently influenced the MoO3/ZrO2 activity toward sulfur-resistant methanation. The 25 wt% MoO3/ZrO2 catalyst prepared using Zr(NO3)4·5H2O as the precursor and treated by water washing displayed the best activity for sulfur-resistant methanation due to its greater number of octahedral Mo species and smaller ZrO2 grain size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Li Z, Liu J, Wang H et al (2013) Effect of sulfidation temperature on the catalytic behavior of unsupported MoS2 catalysts for synthetic natural gas production from syngas. J Mol Catal A Chem 378:99–108

    Article  Google Scholar 

  2. Liu J, Wang E, Lv J et al (2013) Investigation of sulfur-resistant, highly active unsupported MoS2 catalysts for synthetic natural gas production from CO methanation. Fuel Process Technol 110:249–257

    Article  Google Scholar 

  3. Shi XR, Jiao H, Wang J et al (2009) CO hydrogenation reaction on sulfided molybdenum catalysts. J Mol Catal A Chem 312(1–2):7–17

    Article  Google Scholar 

  4. Fu Y, Lu W, Huang Z (1989) Study of methanation and O2 chemisorption with several supported sulfided molybdenum catalysts. J Univ Sci Technol China 19(2):171–177 (in Chinese)

    Google Scholar 

  5. Li Z, Tian Y, He J et al (2014) High CO methanation activity on zirconia-supported molybdenum sulfide catalyst. J Energy Chem 23(5):625–632

    Article  Google Scholar 

  6. Xie H, Lu J, Shekhar M et al (2013) Synthesis of Na-stabilized nonporous t-ZrO2 supports and Pt/t-ZrO2 catalysts and application to water-gas-shift reaction. ACS Catal 3(1):61–73

    Article  Google Scholar 

  7. Nabgan W, Abdullah TAT, Mat R et al (2016) Influence of Ni to Co ratio supported on ZrO2 catalysts in phenol steam reforming for hydrogen production. Int J Hydrog Energy 41(48):22922–22931

    Article  Google Scholar 

  8. Samson K, Śliwa M, Socha RP et al (2014) Influence of ZrO2 structure and copper electronic state on activity of Cu/ZrO2 catalysts in methanol synthesis from CO2. ACS Catal 4(10):3730–3741

    Article  Google Scholar 

  9. Xu BQ, Wei JM, Yu YT et al (2003) Carbon dioxide reforming of methane over nanocomposite Ni/ZrO2 catalysts. Top Catal 22(1–2):77–85

    Article  Google Scholar 

  10. Souza PMD, Rabelo-Neto RC, Borges LEP et al (2015) Effect of zirconia morphology on hydrodeoxygenation of phenol over Pd/ZrO2. ACS Catal 5(12):7385–7398

    Article  Google Scholar 

  11. Mortensen PM, Carvalho HWPD, Grunwaldt JD et al (2015) Activity and stability of Mo2C/ZrO2 as catalyst for hydrodeoxygenation of mixtures of phenol and 1-octanol. J Catal 328:208–215

    Article  Google Scholar 

  12. Wang Y, Gao W, Zheng Y et al (2014) The influence of Zn/Zr ratios on CuO–ZnO–ZrO2 catalysts for methanol synthesis from CO2 hydrogenation. Adv Mater Res 941–944:425–429

    Google Scholar 

  13. Guo X, Mao D, Lu G et al (2011) The influence of La doping on the catalytic behavior of Cu/ZrO2 for methanol synthesis from CO2 hydrogenation. J Mol Catal A Chem 345:60–68

    Article  Google Scholar 

  14. Jin G, Lu G, Guo Y et al (2004) Direct epoxidation of propylene with molecular oxygen over Ag–MoO3/ZrO2 catalyst. Catal Today 93–95:173–182

    Article  Google Scholar 

  15. Chen A, Zhou Y, Miao S et al (2016) Assembly of monoclinic ZrO2 nanorods: formation mechanism and crystal phase control. CrystEngComm 18:580–587

    Article  Google Scholar 

  16. Jung KT, Bell AT (2002) Effects of zirconia phase on the synthesis of methanol over zirconia-supported copper. Catal Lett 80(1–2):63–68

    Article  Google Scholar 

  17. Ma ZY, Yang C, Wei W et al (2005) Surface properties and CO adsorption on zirconia polymorphs. J Mol Catal A Chem 227(1–2):119–124

    Article  Google Scholar 

  18. Yamaguchi T (1994) Application of ZrO2 as a catalyst and a catalyst support. Catal Today 20(2):199–217

    Article  Google Scholar 

  19. Samantaray S, Hota G, Mishra BG (2011) Physicochemical characterization and catalytic applications of MoO–ZrO composite oxides towards one pot synthesis of amidoalkyl naphthols. Catal Commun 12(13):1255–1259

    Article  Google Scholar 

  20. Liu Q, Gu F, Zhong Z et al (2016) Anti-sintering ZrO2-modified Ni/α-Al2O3 catalyst for CO methanation. RSC Adv 6:20979–20986

    Article  Google Scholar 

  21. Guo C, Wu Y, Qin H et al (2014) CO methanation over ZrO2/Al2O3 supported Ni catalysts: a comprehensive study. Fuel Process Technol 124:61–69

    Article  Google Scholar 

  22. Zheng WT, Sun KQ, Liu HM et al (2012) Nanocomposite Ni/ZrO2: highly active and stable catalyst for H2 production via cyclic stepwise methane reforming reactions. Int J Hydrog Energy 37(16):11735–11747

    Article  Google Scholar 

  23. Zhao A, Ying W, Zhang H et al (2012) Ni–Al2O3 catalysts prepared by solution combustion method for syngas methanation. Catal Commun 17:34–38

    Article  Google Scholar 

  24. Zhang J, Bai Y, Zhang Q et al (2014) Low-temperature methanation of syngas in slurry phase over Zr-doped Ni/γ-Al2O3 catalysts prepared using different methods. Fuel 132:211–218

    Article  Google Scholar 

  25. Thomas R, Van Oers EM, De Beer VHJ et al (1983) Characterization of silica-supported molybdenum oxide and tungsten oxide. Reducibility of the oxidic state versus hydrodesulfurization activity of the sulfided state. J Catal 84:275–287

    Article  Google Scholar 

  26. Arnoldy P, De Jonge JCM, Moulijn JA (1985) Temperature-programed reduction of molybdenum(VI) oxide and molybdenum(IV) oxide. J Phys Chem 89:4517–4526

    Article  Google Scholar 

  27. Scheffer B, De Jonge JCM, Arnoldy P et al (1984) Temperature programmed sulfiding of CoO/MoO3/γ-Al2O3 catalysts. Bull Soc Chim Belg 93(8–9):751–762

    Google Scholar 

  28. Bhaskar T, Reddy KR, Kumar CP (2001) Characterization and reactivity of molybdenum oxide catalysts supported on zirconia. Appl Catal A Gen 211:189–201

    Article  Google Scholar 

  29. López Cordero R, López Agudo A (2000) Effect of water extraction on the surface properties of Mo/Al2O3 and NiMo/Al2O3 hydrotreating catalysts. Appl Catal A Gen 202(1):23–35

    Article  Google Scholar 

  30. Zhou TN, Yin HL, Liu YQ et al (2010) Effect of phosphorus content on the active phase structure of NiMoP/Al2O3 catalyst. J Fuel Chem Technol 38(1):69–74

    Article  Google Scholar 

  31. Teimouri A, Najari B, Chermahini AN et al (2014) Characterization and catalytic properties of molybdenum oxide catalysts supported on ZrO2–γ-Al2O3 for ammoxidation of toluene. RSC Adv 4:37679–37686

    Article  Google Scholar 

  32. Badoga S, Mouli KC, Soni KK et al (2012) Beneficial influence of EDTA on the structure and catalytic properties of sulfided NiMo/SBA-15 catalysts for hydrotreating of light gas oil. Appl Catal B Environ 125:67–84

    Article  Google Scholar 

  33. Chen K, Xie S, Iglesia E et al (2000) Structure and properties of zirconia-supported molybdenum oxide catalysts for oxidative dehydrogenation of propane. J Catal 189(2):421–430

    Article  Google Scholar 

  34. Chuah GK (1999) An investigation into the preparation of high surface area zirconia. Catal Today 49(1–3):131–139

    Article  Google Scholar 

  35. Li W, Huang H, Li H et al (2008) Facile synthesis of pure monoclinic and tetragonal zirconia nanoparticles and their phase effects on the behavior of supported molybdena catalysts for methanol-selective oxidation. Langmuir 24(15):8358–8366

    Article  Google Scholar 

  36. Lamine N, Benadda A, Djadoun A et al (2016) Effect of preparation protocol on the surface acidity of molybdenum catalysts supported on titania and zirconia. J Mol Catal A Chem 425:157–165

    Article  Google Scholar 

  37. Xie S, Chen K, Bell AT et al (2005) Structural characterization of molybdenum oxide supported on zirconia. J Phys Chem B 104(43):10059–10068

    Article  Google Scholar 

  38. Plazenet G, Payen E, Lynch J et al (2002) Study by EXAFS, Raman, and NMR spectroscopies of the genesis of oxidic precursors of zeolite-supported HDS catalysts. J Phys Chem B 106(28):7013–7028

    Article  Google Scholar 

  39. Dufresne P, Payen E, Grimblot J et al (1981) Study of nickel-molybdenum-γ-aluminum oxide catalysts by X-ray photoelectron and Raman spectroscopy. Comparison with cobalt-molybdenum-γ-aluminum oxide catalysts. J Phys Chem 85:2344–2351

    Article  Google Scholar 

  40. Wang B, Ding G, Shang Y et al (2012) Effects of MoO3 loading and calcination temperature on the activity of the sulphur-resistant methanation catalyst MoO3/γ-Al2O3. Appl Catal A Gen 431–432:144–150

    Article  Google Scholar 

  41. Hu H, Wang W, Liu Z et al (2018) Sulfur-resistant CO methanation to CH4 over MoS2/ZrO2 catalysts: support size effect on morphology and performance of Mo species. Catal Lett 148(8):2585–2595

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (No. 21576203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenhua Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Zhang, X., Wang, B. et al. Optimization of Co-precipitation Condition for Preparing Molybdenum-Based Sulfur-Resistant Methanation Catalysts. Trans. Tianjin Univ. 25, 504–516 (2019). https://doi.org/10.1007/s12209-019-00210-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12209-019-00210-1

Keywords

Navigation