Skip to main content
Log in

Three-Dimensional Hexagram Gold Nanoparticles: Synthesis and Growth Mechanism

  • Research Article
  • Published:
Transactions of Tianjin University Aims and scope Submit manuscript

Abstract

This study explained a procedure to synthesize 3D hexagram gold nanoparticles using a specific morphologically controlled gold precursor reduction. Acetaldehyde acted as the reducing agent along with polyvinyl pyrrolidone as the stabilizing agent with a limited reaction temperature range observed to be near to 25 °C. The resulting special gold nanoparticles were physically characterized and observed to possess an average planar size of 420 nm, an average central thickness of 200 nm, and an average edge thickness of 18 nm. Furthermore, a mechanism model was proposed to describe the oriented growth of gold nanoparticles employing published accounts of the mechanisms involved in the growth of gold hexagonal nanoplates. Moreover, the two major factors that controlled the morphology of synthesized gold nanoparticles were elaborated to provide reference for future fabrication methods of metal nanoparticles in both academia and industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Narayanan R, El-Sayed MA (2005) Catalysis with transition metal nanoparticles in colloidal solution: nanoparticle shape dependence and stability. J Phys Chem B 109(26):12663–12676

    Article  Google Scholar 

  2. Hvolbæk B, Janssens TVW, Clausen BS et al (2007) Catalytic activity of Au nanoparticles. Nano Today 2(4):14–18

    Article  Google Scholar 

  3. Chen MS, Goodman DW (2008) Catalytically active gold on ordered titania supports. Chem Soc Rev 37(9):1860–1870

    Article  Google Scholar 

  4. Zhu WL, Zhang YJ, Zhang HY et al (2014) Active and selective conversion of CO2 to CO on ultrathin Au nanowires. J Am Chem Soc 136(46):16132–16135

    Article  Google Scholar 

  5. Xu ML, Yang XK, Zhang YJ et al (2015) Enhanced methanol oxidation activity of Au@Pd nanoparticles supported on MWCNTs functionalized by MB under ultraviolet irradiation. Rare Met 34(1):12–16

    Article  Google Scholar 

  6. Huang YF, Sefah K, Bamrungsap S et al (2008) Selective photothermal therapy for mixed cancer cells using aptamer-conjugated nanorods. Langmuir 24(20):11860–11865

    Article  Google Scholar 

  7. Parab HJ, Chen HM, Lai TC et al (2009) Biosensing, cytotoxicity, and cellular uptake studies of surface-modified gold nanorods. J Phys Chem C 113(18):7574–7578

    Article  Google Scholar 

  8. Grabinski C, Schaeublin N, Wijaya A et al (2011) Effect of gold nanorod surface chemistry on cellular response. ACS Nano 5(4):2870–2879

    Article  Google Scholar 

  9. Wijaya A, Hamad-Schifferli K (2008) Ligand customization and DNA functionalization of gold nanorods via round-trip phase transfer ligand exchange. Langmuir 24(18):9966–9969

    Article  Google Scholar 

  10. Harry SR, Hicks DJ, Amiri KI et al (2010) Hairpin DNA coated gold nanoparticles as intracellular mRNA probes for the detection of tyrosinase gene expression in melanoma cells. Chem Commun 46(30):5557–5559

    Article  Google Scholar 

  11. Gao D, Sheng Z, Han H (2011) An ultrasensitive method for the detection of gene fragment from transgenics using label-free gold nanoparticle probe and dynamic light scattering. Anal Chim Acta 696(1–2):1–5

    Article  Google Scholar 

  12. Ming T, Zhao L, Xiao M et al (2010) Resonance-coupling-based plasmonic switches. Small 6(22):2514–2519

    Article  Google Scholar 

  13. Shao L, Woo KC, Chen H et al (2010) Angle- and energy-resolved plasmon coupling in gold nanorod dimers. ACS Nano 4(6):3053–3062

    Article  Google Scholar 

  14. Zijlstra P, Chon JWM, Gu M (2009) Five-dimensional optical recording mediated by surface plasmons in gold nanorods. Nature 459(7245):410–413

    Article  Google Scholar 

  15. Sau TK, Rogach AL, Jäckel F et al (2010) Properties and applications of colloidal nonspherical noble metal nanoparticles. Adv Mater 22(16):1805–1825

    Article  Google Scholar 

  16. Liao HG, Jiang YX, Zhou ZY et al (2008) Shape-controlled synthesis of gold nanoparticles in deep eutectic solvents for studies of structure-functionality relationships in electrocatalysis. Angewandte Chemie 47(47):9100–9103

    Article  Google Scholar 

  17. Mahmoud MA, El-Sayed MA (2010) Gold nanoframes: very high surface plasmon fields and excellent near-infrared sensors. J Am Chem Soc 132(36):12704–12710

    Article  Google Scholar 

  18. Dertli E, Coskun S, Esenturk EN (2013) Gold nanowires with high aspect ratio and morphological purity: synthesis, characterization, and evaluation of parameters. J Mater Res 28(2):250–260

    Article  Google Scholar 

  19. Loubat A, Lacroix LM, Robert A et al (2015) Ultrathin gold nanowires: soft-templating versus liquid phase synthesis, a quantitative study. J Phys Chem C 119(8):4422–4430

    Article  Google Scholar 

  20. Vigderman L, Zubarev ER (2012) Starfruit-shaped gold nanorods and nanowires: synthesis and SERS characterization. Langmuir 28(24):9034–9040

    Article  Google Scholar 

  21. Chen L, Ji F, Xu Y et al (2014) High-yield seedless synthesis of triangular gold nanoplates through oxidative etching. Nano Lett 14(12):7201–7206

    Article  Google Scholar 

  22. Huang Y, Ferhan AR, Gao Y et al (2014) High-yield synthesis of triangular gold nanoplates with improved shape uniformity, tunable edge length and thickness. Nanoscale 6(12):6496–6500

    Article  Google Scholar 

  23. Roh J, Back SH, Ahn DJ (2016) Shape-persistent replica synthesis of gold/silver bimetallic nanoplates using tailored silica cages. Small 12(10):1322–1327

    Article  Google Scholar 

  24. Daeha S, Choong IY, Im SC et al (2008) Shape adjustment between multiply twinned and single-crystalline polyhedral gold nanocrystals: decahedra, icosahedra, and truncated tetrahedra. J Phys Chem C 112(7):2469–2475

    Article  Google Scholar 

  25. Li J, Chang M, Peng H et al (2014) Growth of elongated tetrahexahedral gold nanoparticles with high-index facets and their enhanced electrocatalytic properties. Mater Lett 120:216–218

    Article  Google Scholar 

  26. Seo D, Park JC, Song H (2006) Polyhedral gold nanocrystals with Oh symmetry: from octahedra to cubes. J Am Chem Soc 128(46):14863–14870

    Article  Google Scholar 

  27. Zhang J, Liu H, Wang Z et al (2007) Synthesis of gold regular octahedra with controlled size and plasmon resonance. Appl Phys Lett 90(16):3295–3303

    Google Scholar 

  28. Liu M, Guyot-Sionnest P (2005) Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids. J Phys Chem B 109(47):22192–22200

    Article  Google Scholar 

  29. Smith DK, Korgel BA (2008) The importance of the CTAB surfactant on the colloidal seed-mediated synthesis of gold nanorods. Langmuir 24(3):644–649

    Article  Google Scholar 

  30. Murphy CJ, Sau TK, Gole AM et al (2005) Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B 109(29):13857–13870

    Article  Google Scholar 

  31. Zhu C, Peng HC, Zeng J et al (2012) Facile synthesis of gold wavy nanowires and investigation of their growth mechanism. J Am Chem Soc 134(50):20234–20237

    Article  Google Scholar 

  32. Lofton C, Sigmund W (2005) Mechanisms controlling crystal habits of gold and silver colloids. Adv Func Mater 15(7):1197–1208

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinsheng Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Zhang, P., Fu, S. et al. Three-Dimensional Hexagram Gold Nanoparticles: Synthesis and Growth Mechanism. Trans. Tianjin Univ. 25, 31–37 (2019). https://doi.org/10.1007/s12209-018-0127-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12209-018-0127-9

Keywords

Navigation