Skip to main content
Log in

Fe–Mn/MCM-41: Preparation, Characterization, and Catalytic Activity for Methyl Orange in the Process of Heterogeneous Fenton Reaction

  • Research Article
  • Published:
Transactions of Tianjin University Aims and scope Submit manuscript

Abstract

Active Fe- and Mn-loaded MCM-41 (Fe–Mn/MCM-41), which was synthesized via a hydrothermal reaction followed by impregnation, is used in the heterogeneous Fenton reaction to degrade methyl orange (MO) in aqueous solution. The synthesized samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, N2 adsorption–desorption isotherm analysis, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. Compared with Fe/MCM-41 and Mn/MCM-41, Fe–Mn/MCM-41 showed higher activity for MO degradation and mineralization. Effects of various operating parameters, such as pH, Mn content, and H2O2 dosage, on the degradation process were subsequently investigated. Results of experiments on the effect of radical scavengers revealed that the degradation of MO could be attributed to oxidation by HO·. The synergy of Fe and Mn species in the Fenton oxidation process was also explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Fernandez J, Maruthamuthu P, Kiwi J (2004) Photobleaching and mineralization of Orange II by oxone and metal-ions involving Fenton-like chemistry under visible light. J Photochem Photobiol A 161(2–3):185–192

    Google Scholar 

  2. Hoffmann MR, Martin ST, Choi W et al (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96

    Article  Google Scholar 

  3. Fu HB, Pan CS, Yao WQ et al (2005) Visible-light-induced degradation of rhodamine B by nanosized Bi2WO6. J Phys Chem B 109(47):22432–22439

    Article  Google Scholar 

  4. Nguyen TD, Phan NH, Do MH et al (2011) Magnetic Fe2MO4 (M: Fe, Mn) activated carbons: fabrication, characterization and heterogeneous Fenton oxidation of methyl orange. J Hazard Mater 185(2–3):653–661

    Article  Google Scholar 

  5. Li J, Ma WH, Huang YP et al (2004) Oxidative degradation of organic pollutants utilizing molecular oxygen and visible light over a supported catalyst of Fe (bpy) 2+3 in water. Appl Catal B 48(1):17–24

    Article  Google Scholar 

  6. Quici N, Morgada ME, Piperata G et al (2005) Oxalic acid destruction at high concentrations by combined heterogeneous photocatalysis and photo-Fenton processes. Catal Today 101(3–4):253–260

    Article  Google Scholar 

  7. Hammouda SB, Adhoum N, Monser L (2015) Synthesis of magnetic alginate beads based on Fe3O4 nanoparticles for the removal of 3-methylindole from aqueous solution using Fenton process. J Hazard Mater 294:128–136

    Article  Google Scholar 

  8. Gao LZ, Zhuang J, Nie L et al (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2(9):577–583

    Article  Google Scholar 

  9. Xu LJ, Wang JL (2012) Magnetic nanoscaled Fe3O4/CeO2 composite as an efficient Fenton-like heterogeneous catalyst for degradation of 4-chlorophenol. Environ Sci Technol 46(18):10145–10153

    Article  Google Scholar 

  10. Muthuvel I, Swaminathan M (2007) Photoassisted Fenton mineralisation of acid violet 7 by heterogeneous Fe(III)-Al2O3 catalyst. Catal Commun 8(7):981–986

    Article  Google Scholar 

  11. Iurascu B, Siminiceanu I, Vione D et al (2009) Phenol degradation in water through a heterogeneous photo-Fenton process catalyzed by Fe-treated laponite. Water Res 43(5):1313–1322

    Article  Google Scholar 

  12. Chen QQ, Wu PX, Li YY et al (2009) Heterogeneous photo-Fenton photodegradation of reactive brilliant orange X-GN over iron-pillared montmorillonite under visible irradiation. J Hazard Mater 168(2–3):901–908

    Article  Google Scholar 

  13. Duarte F, Maldonado-Hódar FJ, Pérez-Cadenas AF et al (2009) Fenton-like degradation of azo-dye Orange II catalyzed by transition metals on carbon aerogels. Appl Catal B 85(3–4):139–147

    Article  Google Scholar 

  14. Ramirez JH, Maldonado-Hódar FJ, Pérez-Cadenas AF et al (2007) Azo-dye Orange II degradation by heterogeneous Fenton-like reaction using carbon-Fe catalysts. Appl Catal B 75(3–4):312–323

    Article  Google Scholar 

  15. Gonzalez-Olmos R, Roland U, Toufar H et al (2009) Fe-zeolites as catalysts for chemical oxidation of MTBE in water with H2O2. Appl Catal B 89(3):356–364

    Article  Google Scholar 

  16. Gonzalez-Olmos R, Martin MJ, Georgi A et al (2012) Fe-zeolites as heterogeneous catalysts in solar Fenton-like reactions at neutral pH. Appl Catal B 125(3):51–58

    Article  Google Scholar 

  17. Oliveira P, Machado A, Ramos AM et al (2009) MCM-41 anchored manganese salen complexes as catalysts for limonene oxidation. Microporous Mesoporous Mater 120(3):432–440

    Article  Google Scholar 

  18. Singh UG, Williams RT, Hallam KR et al (2005) Exploring the distribution of copper–Schiff base complex covalently anchored onto the surface of mesoporous MCM-41 silica. J Solid State Chem 178(11):3405–3413

    Article  Google Scholar 

  19. Chen ZW, Jiao Z, Pan DY et al (2012) Recent advances in manganese oxide nanocrystals: fabrication, characterization, and microstructure. Chem Rev 112(7):3833–3855

    Article  Google Scholar 

  20. Chen C, Ding GJ, Zhang D et al (2012) Microstructure evolution and advanced performance of Mn3O4 nanomorphologies. Nanoscale 4(8):2590–2596

    Article  Google Scholar 

  21. Einaga H, Yamamoto S, Maeda N et al (2015) Structural analysis of manganese oxides supported on SiO2, for benzene oxidation with ozone. Catal Today 242(2):287–293

    Article  Google Scholar 

  22. Tang QH, Hu SQ, Chen YT et al (2010) Highly dispersed manganese oxide catalysts grafted on SBA-15: synthesis, characterization and catalytic application in trans-stilbene epoxidation. Microporous Mesoporous Mater 132(3):501–509

    Article  Google Scholar 

  23. Li JF, Yan NQ, Qu Z et al (2017) Catalytic oxidation of elemental mercury over the modified catalyst Mn/α-Al2O3 at lower temperatures. Environ Sci Technol 44(1):426–431

    Article  Google Scholar 

  24. Zhao J, Yang JJ, Ma J (2014) Mn (II)-enhanced oxidation of benzoic acid by Fe(III)/H2O2 system. Chem Eng J 239(3):171–177

    Article  Google Scholar 

  25. Li YF, Sun JH, Sun SP (2016) Mn2+-mediated homogeneous Fenton-like reaction of Fe(III)-NTA complex for efficient degradation of organic contaminants under neutral conditions. J Hazard Mater 313:193–200

    Article  Google Scholar 

  26. Huang RT, Liu YY, Chen ZW et al (2015) Fe-species-loaded mesoporous MnO2 superstructural requirements for enhanced catalysis. ACS Appl Mater Interfaces 7(7):1–39

    Google Scholar 

  27. Cai Q, Cui FZ, Chen XH et al (2009) Nanosphere of ordered silica MCM-41 hydrothermally synthesized with low surfactant concentration. Chem Lett 29(9):1044–1045

    Article  Google Scholar 

  28. Yonezawa T, Toshima N, Wakai C et al (2000) Structure of monoalkyl-monocationic surfactants on the microscopic three-dimensional platinum surface in water. Colloids Surf A 169(1):35–45

    Article  Google Scholar 

  29. Jiang YQ, Lin KF, Zhang YN et al (2012) Fe-MCM-41 nanoparticles as versatile catalysts for phenol hydroxylation and for Friedel–Crafts alkylation. Appl Catal A 445–446:172–179

    Article  Google Scholar 

  30. Huang RH, Lan BY, Chen ZY et al (2012) Catalytic ozonation of p-chlorobenzoic acid over MCM-41 and Fe loaded MCM-41. Chem Eng J 180(3):19–24

    Article  Google Scholar 

  31. Gaydhankar TR, Samuel V, Joshi PN (2006) Hydrothermal synthesis of MCM-41 using differently manufactured amorphous dioxosilicon sources. Mater Lett 60(7):957–961

    Article  Google Scholar 

  32. Shen SH, Guo LJ (2007) Hydrothermal synthesis, characterization, and photocatalytic performances of Cr incorporated, and Cr and Ti co-incorporated MCM-41 as visible light photocatalysts for water splitting. Catal Today 129(3–4):414–420

    Article  Google Scholar 

  33. Tsoncheva T, Rosenholm J, Linden M et al (2008) Critical evaluation of the state of iron oxide nanoparticles on different mesoporous silicas prepared by an impregnation method. Microporous Mesoporous Mater 112(1):327–337

    Article  Google Scholar 

  34. Rath D, Parida KM (2011) Copper and nickel modified MCM-41 An efficient catalyst for hydrodehalogenation of chlorobenzene at room temperature. Ind Eng Chem Res 50(5):2839–2849

    Article  Google Scholar 

  35. Cuello NI, Elías VR, Torres CER et al (2015) Development of iron modified MCM-41 as promising nano-composites with specific magnetic behavior. Microporous Mesoporous Mater 203:106–115

    Article  Google Scholar 

  36. Han BQ, Zhang F, Feng ZP et al (2014) A designed Mn2O3/MCM-41 nanoporous composite for methylene blue and rhodamine B removal with high efficiency. Ceram Int 40(6):8093–8101

    Article  Google Scholar 

  37. Sheydaei M, Aber S, Khataee A (2014) Degradation of amoxicillin in aqueous solution using nanolepidocrocite chips/H2O2/UV: optimization and kinetics studies. J Ind Eng Chem 20(4):1772–1778

    Article  Google Scholar 

  38. Guo J, Al-Dahhan M (2003) Catalytic wet oxidation of phenol by hydrogen peroxide over pillared clay catalyst. Ind Eng Chem Res 42(12):2450–2460

    Article  Google Scholar 

  39. Cheng G, Lin J, Lu J et al (2015) Advanced treatment of pesticide-containing wastewater using Fenton reagent enhanced by microwave electrodeless ultraviolet. Biomed Res Int 1–3:205903

    Google Scholar 

  40. Xia M, Long MC, Yang YD et al (2011) A highly active bimetallic oxides catalyst supported on Al-containing MCM-41 for Fenton oxidation of phenol solution. Appl Catal B 110:118–125

    Article  Google Scholar 

  41. Dutta K, Mukhopadhyay S, Bhattacharjee S et al (2001) Chemical oxidation of methylene blue using a Fenton-like reaction. J Hazard Mater 84(1):57–71

    Article  Google Scholar 

  42. Watts RJ, Bottenberg BC, Hess TF et al (1999) Role of reductants in the enhanced desorption and transformation of chloroaliphatic compounds by modified Fenton’s reactions. Environ Sci Technol 33:3432–3437

    Article  Google Scholar 

  43. Watts RJ, Sarasa J, Loge FJ et al (2005) Oxidative and reductive pathways in manganese-catalyzed Fenton’s reactions. J Environ Eng 131(1):158–164

    Article  Google Scholar 

  44. Do SH, Batchelor B, Lee HK et al (2009) Hydrogen peroxide decomposition on manganese oxide (pyrolusite): kinetics, intermediates, and mechanism. Chemosphere 75(1):8–12

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Basic Research Program of China (“973” Program, No. 2012CB720302) and Program for Changjiang Scholars and the Innovative Research Team in Universities (No. IRT0936).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Dong, J., Hao, Z. et al. Fe–Mn/MCM-41: Preparation, Characterization, and Catalytic Activity for Methyl Orange in the Process of Heterogeneous Fenton Reaction. Trans. Tianjin Univ. 24, 361–369 (2018). https://doi.org/10.1007/s12209-018-0122-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12209-018-0122-1

Keywords

Navigation