Transactions of Tianjin University

, Volume 24, Issue 2, pp 160–171 | Cite as

Co-production of Multiple Antimicrobial Compounds by Bacillus amyloliquefaciens WY047, a Strain with Broad-Spectrum Activity

  • Ye Han
  • Xingxing Li
  • Yanyun Guo
  • Weining Sun
  • Qiaoge Zhang
Research article


A bacterial strain WY047 was isolated from fermented grains and the bacterium was identified as Bacillus amyloliquefaciens, based on morphological, biochemical, and physiological tests, and analysis of 16S rRNA and gyrA sequences. The culture supernatant of WY047 demonstrated inhibition of a wide spectrum of bacteria (Gram positive and Gram negative) and fungi. Nine pairs of primers were designed and six genes (bmyD, fenA, hag, ituA, mrsA, and tasA) of antimicrobial substances were detected by PCR, one of which was isolated by 80% ammonium sulfate precipitation, D201 resin anion-exchange chromatography, and Sephadex G-75 filtration column. The purified peptide was estimated to be 35,207 Da and identified as flagellin by MALDI-TOF mass spectrometry. Another four antimicrobial substances were extracted with methanol and identified as iturin A, fengycin, bacillomycin D, and mersacidin through the liquid chromatography–mass spectrometry (LC–MS) method. The sixth possible peptide encoded by tasA could not be isolated in this study; however, the broader spectrum suggested huge application prospects.


Antimicrobial substances Purification Identification Broad spectrum 


  1. 1.
    Li Y, Xiang Q, Zhang Q et al (2012) Overview on the recent study of antimicrobial peptides: origins, functions, relative mechanisms and application. Peptides 37(2):207–215MathSciNetCrossRefGoogle Scholar
  2. 2.
    Touré Y, Ongena M, Jacques P et al (2004) Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple. J Appl Microbiol 96:1151–1160CrossRefGoogle Scholar
  3. 3.
    Chen XH, Koumoutsi A, Scholz R et al (2009) Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens. J Biotechnol 140(1–2):27–37CrossRefGoogle Scholar
  4. 4.
    Wang G, Feng G, Snyder AB et al (2014) Bactericidal thurincin H causes unique morphological changes in Bacillus cereus F4552 without affecting membrane permeability. FEMS Microbiol Lett 357(1):69–76CrossRefGoogle Scholar
  5. 5.
    Koberl M, Ramadan EM, Adam M et al (2013) Bacillus and Streptomyces were selected as broad-spectrum antagonists against soilborne pathogens from arid areas in Egypt. FEMS Microbiol Lett 342(2):168–178CrossRefGoogle Scholar
  6. 6.
    Lee YK, Senthilkumar M, Kim JH, Annapurna K et al (2008) Purification and partial characterization of antifungal metabolite from Paenibacillus lentimorbus WJ5. World J Microbiol Biotechnol 24:3057–3062CrossRefGoogle Scholar
  7. 7.
    Athukorala SN, Fernando WG, Rashid KY (2009) Identification of antifungal antibiotics of Bacillus species isolated from different microhabitats using polymerase chain reaction and MALDI-TOF mass spectrometry. Can J Microbiol 55(9):1021–1032CrossRefGoogle Scholar
  8. 8.
    Mora I, Cabrefiga J, Montesinos E (2011) Antimicrobial peptide genes in Bacillus strains from plant environments. Int Microbiol 14(4):213–223Google Scholar
  9. 9.
    Deng H, Han Y, Liu Y et al (2012) Identification of a newly isolated erythritol-producing yeast and cloning of its erythrose reductase genes. J Ind Microbiol Biotechnol 39(11):1663–1672CrossRefGoogle Scholar
  10. 10.
    Roberts MS, Nakamura LK, Cohan FM (1994) Bacillus mojavensis sp. nov., distinguishable from Bacillus subtilis by sexual isolation, divergence in DNA sequence, and differences in fatty acid composition. Int J Syst Bacteriol 44(2):256–264CrossRefGoogle Scholar
  11. 11.
    Zhao X, Zhou ZJ, Han Y et al (2013) Isolation and identification of antifungal peptides from Bacillus BH072, a novel bacterium isolated from honey. Microbiol Res 168(9):598–606CrossRefGoogle Scholar
  12. 12.
    Chun J, Goodfellow M (1995) A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int J Syst Bacteriol 45(1):240–245CrossRefGoogle Scholar
  13. 13.
    Koumoutsi A, Chen XH, Henne A et al (2004) Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens Strain FZB42. J Bacteriol 186(4):1084–1096CrossRefGoogle Scholar
  14. 14.
    Bizani D, Brandelli A (2002) Characterization of a bacteriocin produced by a newly isolated Bacillus sp Strain 8A. J Appl Microbiol 93(3):512–519CrossRefGoogle Scholar
  15. 15.
    Laemmli UK, Favre M (1973) Maturation of the head of bacteriophage T4. I. DNA packaging events. J Mol Biol 80(4):575–599CrossRefGoogle Scholar
  16. 16.
    Tan Z, Lin B, Zhang R et al (2013) A novel antifungal protein of Bacillus subtilis B25. SpringerPlus 2:543CrossRefGoogle Scholar
  17. 17.
    Price NP, Rooney AP, Swezey JL et al (2007) Mass spectrometric analysis of lipopeptides from Bacillus strains isolated from diverse geographical locations. FEMS Microbiol Lett 271(1):83–89CrossRefGoogle Scholar
  18. 18.
    Hiradate S, Yoshida S, Sugie H et al (2002) Mulberry anthracnose antagonists (iturins) produced by Bacillus amyloliquefaciens RC-2. Phytochemistry 61:693–698CrossRefGoogle Scholar
  19. 19.
    He P, Hao K, Blom J et al (2012) Genome sequence of the plant growth promoting strain Bacillus amyloliquefaciens subsp. plantarum B9601-Y2 and expression of mersacidin and other secondary metabolites. J Biotechnol 164(2):281–291CrossRefGoogle Scholar
  20. 20.
    Herzner AM, Dischinger J, Szekat C et al (2011) Expression of the lantibiotic mersacidin in Bacillus amyloliquefaciens FZB42. PLoS ONE 6(7):e22389CrossRefGoogle Scholar
  21. 21.
    Ben Ayed H, Hmidet N, Béchet M et al (2014) Identification and biochemical characteristics of lipopeptides from Bacillus mojavensis A21. Process Biochem 49(10):1699–1707CrossRefGoogle Scholar
  22. 22.
    Roy A, Mahata D, Paul D et al (2013) Purification, biochemical characterization and self-assembled structure of a fengycin-like antifungal peptide from Bacillus thuringiensis strain SM1. Front Microbiol 4:332Google Scholar
  23. 23.
    Romero D, de Vicente A, Rakotoaly Rivo H et al (2007) The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol Plant Microbe Interact 20(4):430–440CrossRefGoogle Scholar
  24. 24.
    Alvarez F, Castro M, Principe A et al (2012) The plant-associated Bacillus amyloliquefaciens strains MEP218 and ARP23 capable of producing the cyclic lipopeptides iturin or surfactin and fengycin are effective in biocontrol of sclerotinia stem rot disease. J Appl Microbiol 112(1):159–174CrossRefGoogle Scholar
  25. 25.
    Denning N, Morgan JAW, Whipps JM et al (1997) The flagellin gene as a stable marker for detection of Pseudomonas fluorescens SBW25. Lett Appl Microbiol 24:198–202CrossRefGoogle Scholar
  26. 26.
    Raaijmakers JM, de Bruijn I, Nybroe O et al (2010) Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev 34(6):1037–1062CrossRefGoogle Scholar
  27. 27.
    Ma Z, Hu J (2014) Production and characterization of iturinic lipopeptides as antifungal agents and biosurfactants produced by a marine pinctada martensii-derived Bacillus mojavensis B0621A. Appl Biochem Biotechnol 173(3):705–715CrossRefGoogle Scholar
  28. 28.
    McCormick SP (2013) Microbial detoxification of mycotoxins. J Chem Ecol 39(7):907–918CrossRefGoogle Scholar
  29. 29.
    Hu LB, Shi ZQ, Zhang T et al (2007) Fengycin antibiotics isolated from B-FS01 culture inhibit the growth of Fusarium moniliforme Sheldon ATCC38932. FEMS Microbiol Lett 272:91–98CrossRefGoogle Scholar
  30. 30.
    Hu LB, Zhang T, Yang ZM et al (2009) Inhibition of fengycins on the production of fumonisin B1 from Fusarium verticillioides. Lett Appl Microbiol 48:84–89CrossRefGoogle Scholar
  31. 31.
    Falardeau J, Wise C, Novitsky L et al (2013) Ecological and mechanistic insights into the direct and indirect antimicrobial properties of Bacillus subtilis lipopeptides on plant pathogens. J Chem Ecol 39(7):869–878CrossRefGoogle Scholar
  32. 32.
    Gong Q, Zhang C, Lu F et al (2014) Identification of bacillomycin D from Bacillus subtilis fmbJ and its inhibition effects against Aspergillus flavus. Food Control 36(1):8–14CrossRefGoogle Scholar
  33. 33.
    Appleyard AN, Choi S, Read DM et al (2009) Dissecting structural and functional diversity of the lantibiotic mersacidin. Chem Biol 16(5):490–498CrossRefGoogle Scholar
  34. 34.
    Stover AG, Driks A (1999) Regulation of synthesis of the Bacillus subtilis transition-phase, spore-associated antibacterial protein TasA. J Bacteriol 181(17):5476–5481Google Scholar

Copyright information

© Tianjin University and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Ye Han
    • 1
  • Xingxing Li
    • 1
  • Yanyun Guo
    • 1
  • Weining Sun
    • 1
  • Qiaoge Zhang
    • 1
  1. 1.School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina

Personalised recommendations