Skip to main content
Log in

Study of 2-Propanol Photocatalytic Degradation on Surface of Phase-Ratio-Controlled TiO2 Nanoparticles

  • Research article
  • Published:
Transactions of Tianjin University Aims and scope Submit manuscript

Abstract

The crystal form of TiO2 is a crucial focus of research on the photocatalytic degradation of gaseous pollutants by TiO2-based composite photocatalysts. To explore the synergistic effect of mixed crystalline TiO2 on gaseous organic-pollutant photocatalytic degradation, we synthesized a series of TiO2 nanoparticles with controllable phase ratios. We explored the role of the TiO2 phase ratio on the photocatalytic activity and degradation pathway in the photodegradation of 2-propanol (IPA). We estimated the crystallite size and crystal proportions of anatase and rutile by X-ray diffraction. We used the Brunauer–Emmett–Teller method to calculate the specific surface area and Fourier transform infrared spectroscopy to characterize the surface chemistry of the samples. Our results show the photocatalytic activities of pure anatase and the sample with 8.6% rutile to be much better than those of the samples with a phase junction and pure rutile. As such, anatase is the better option for the study of photodegradation design and preparation of gas-phase organic pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1

Similar content being viewed by others

References

  1. Yamashita H, Harada M, Misaka J et al (2002) Degradation of propanol diluted in water under visible light irradiation using metal ion-implanted titanium dioxide photocatalysts. J Photochem Photobiol A 148(1–3):257–261

    Article  Google Scholar 

  2. Karakitsou KE, Verykios XE (1993) Effects of altervalent cation doping of titania on its performance as a photocatalyst for water cleavage. Cheminform 97(6):1184–1189

    Google Scholar 

  3. And HT, Tanaka M (2008) Dependence of TiO2 photocatalytic activity upon its film thickness. Langmuir 13(2):360–364

    Google Scholar 

  4. Zhu J, Zheng W, He B et al (2004) Characterization of Fe–TiO2 photocatalysts synthesized by hydrothermal method and their photocatalytic reactivity for photodegradation of XRG dye diluted in water. J Mol Catal A-C 216(1):35–43

    Article  Google Scholar 

  5. Nicola A (2000) Why are there so few magnetic ferroelectrics? J Phys Chem B 104:6694–6709

    Article  Google Scholar 

  6. Rivera AP, Tanaka K, Hisanaga T et al (1993) Photocatalytic degradation of pollutant over TiO2 in different crystal structures. Appl Catal B-Environ 3(1):37–44

    Article  Google Scholar 

  7. Carp O, Huisman CL, Reller A et al (2004) Photoinduced reactivity of titanium dioxide. Prog Solid State Chem 32(1–2):33–177

    Article  Google Scholar 

  8. Liu G, Chen Z, Dong C et al (2006) Visible light photocatalyst: iodine-doped mesoporous titania with a bicrystalline framework. J Phys Chem B 110(42):20823–20828

    Article  Google Scholar 

  9. Hurum DC, Agrios AG, Gray KA et al (2003) Explaining the enhanced photocatalytic activity of degussa P25 mixed-phase TiO2 using EPR. J Phys Chem B 107(19):4545–4549

    Article  Google Scholar 

  10. Hurum DC, Gray KA, Rajh T et al (2005) Recombination pathways in the Degussa P25 formulation of TiO2: surface versus lattice mechanisms. J Phys Chem B 109(2):977–980

    Article  Google Scholar 

  11. Zachariah A, Baiju KV, Shukla S et al (2008) Synergistic effect in photocatalysis as observed for mixed-phase nanocrystalline titania processed via sol–gel solvent mixing and calcinations. J Phys Chem C 112:11345–11356

    Article  Google Scholar 

  12. Li G, Gray KA (2007) The solid–solid interface: explaining the high and unique photocatalytic reactivity of TiO-based nanocomposite materials. Chem Phys 339(1):173–187

    Article  Google Scholar 

  13. Liu G, Yan X, Chen Z et al (2007) Synthesis of rutile–anatase core–shell structured TiO2 for photocatalysis. J Mater Chem 19(36):6590–6596

    Article  Google Scholar 

  14. Likodimos V, Chrysi A, Calamiotou M (2016) Microstructure and charge trapping assessment in highly reactive mixed phase TiO2 photocatalysts. Appl Catal B-Environ 192:242–252

    Article  Google Scholar 

  15. Li Z, Cong S, Xu Y (2016) Brookite vs. anatase TiO2 in the photocatalytic activity for organic degradation in water. ACS Catal 4(9):3273–3280

    Article  Google Scholar 

  16. Xu W, Raftery D, Francisco JS (2003) Effect of irradiation sources and oxygen concentration on the photocatalytic oxidation of 2-propanol and acetone studied by in situ FTIR. J Phys Chem B 07(19):4537–4544

    Article  Google Scholar 

  17. Arana J, Alonso AP, Rodriguez JMD et al (2009) FTIR study of photocatalytic degradation of 2-propanol in gas phase with different TiO2 catalysts. Appl Catal B-Environ 89(1):204–213

    Article  Google Scholar 

  18. Salazar C, Nanny MA (2010) Influence of hydrogen bonding upon the TiO2 photooxidation of isopropanol and acetone in aqueous solution. J Catal 269(2):404–410

    Article  Google Scholar 

  19. Larson SA, Widegren JA, Falconer JL (1995) Transient studies of 2-propanol photocatalytic oxidation on titania. J Catal 157(2):611–625

    Article  Google Scholar 

  20. Arsac F, Bianchi D, Chovelon JM et al (2006) Experimental microkinetic approach of the photocatalytic oxidation of isopropyl alcohol on TiO2. Part 1. Surface elementary steps involving gaseous and adsorbed C3H x O Species. J Phys Chem A 110(12):4202–4212

    Article  Google Scholar 

  21. Ohtani B, Iwai K, Nishimoto S et al (1997) Role of platinum deposits on titanium(IV) oxide particles: structural and kinetic analyses of photocatalytic reaction in aqueous alcohol and amino acid solutions. J Phys Chem B 101(17):3349–3359

    Article  Google Scholar 

  22. Sclafani A, Herrmann JM (1998) Influence of metallic silver and of platinum–silver bimetallic deposits on the photocatalytic activity of titania (anatase and rutile) in organic and aqueous media. J Photochem Photobiol A: Chem 113(2):181–188

    Article  Google Scholar 

  23. Marcì G, García-López E, Palmisano L (2009) Photo-assisted degradation of 2-propanol in gas–solid regime by using TiO2 impregnated with heteropoly acid H3PW12O40. Catal Today 144(1):42–47

    Article  Google Scholar 

  24. Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C 1(1):1–21

    Article  Google Scholar 

  25. Wang H, Tan X, Yu T (2014) Preparation and photoelectric property of TiO2 nanoparticles with controllable phase junctions. Appl Surf Sci 321:531–537

    Article  Google Scholar 

  26. Zheng W, Liu X, Yan Z et al (2008) Ionic liquid-assisted synthesis of large-scale TiO2 nanoparticles with controllable phase by hydrolysis of TiCl4. ACS Nano 3(1):115–122

    Article  Google Scholar 

  27. Zhang J, Xu Q, Feng Z et al (2008) Importance of the relationship between surface phases and photocatalytic activity of TiO2. Angew Chem Int Ed 47(9):1766–1769

    Article  Google Scholar 

  28. Nosaka AY, Fujiwara T, Yagi H et al (2004) Characteristics of water adsorbed on TiO2 photocatalytic systems with increasing temperature as studied by solid-state 1H NMR spectroscopy. J Phys Chem B 108(26):9121–9125

    Article  Google Scholar 

  29. Bolis V, Bordiga S, Lamberti C et al (1999) Heterogeneity of framework Ti(IV) in Ti− silicalite as revealed by the adsorption of NH3. Combined calorimetric and spectroscopic study. Langmuir 15(18):5753–5764

    Article  Google Scholar 

  30. Haffad D, Chambellan A, Lavalley JC (2001) Propan-2-ol transformation on simple metal oxides TiO2, ZrO2 and CeO2. J Mol Catal A: Chem 168(1):153–164

    Article  Google Scholar 

  31. Arana J, Alonso AP, Rodriguez JMD et al (2009) FTIR study of photocatalytic degradation of 2-propanol in gas phase with different TiO2 catalysts. Appl Catal B: Environ 89(1):204–213

    Article  Google Scholar 

  32. Neppolian B, Yamashita H, Okada Y et al (2004) Preparation of TiO2 photocatalysts by multi-gelation and their photocatalytic reactivity for the degradation of 2-propanol. Chem Lett 33(3):268–269

    Article  Google Scholar 

  33. Hernández-Alonso MD, Tejedor-Tejedor I, Coronado JM et al (2009) Operando FTIR study of the photocatalytic oxidation of acetone in air over TiO2–ZrO2 thin films. Catal Today 143(3):364–373

    Article  Google Scholar 

  34. El-Maazawi M, Finken AN, Nair AB et al (2000) Adsorption and photocatalytic oxidation of acetone on TiO2: an in situ transmission FT-IR study. J Catal 191(1):138–146

    Article  Google Scholar 

Download references

Acknowledgements

Part of this work was conducted at the Photocatalytic Materials Center of NIMS. The authors thank Prof. Jinhua Ye for her help with the photoelectric property test. This work was supported by the National Natural Science Foundation of China (Nos. 21406164, 21466035, 51203111), the National Basic Research Program of China (“973” program, Nos. 2012CB720100, 2014CB239300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongmei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wang, H. & Tan, X. Study of 2-Propanol Photocatalytic Degradation on Surface of Phase-Ratio-Controlled TiO2 Nanoparticles. Trans. Tianjin Univ. 24, 1–7 (2018). https://doi.org/10.1007/s12209-017-0077-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12209-017-0077-7

Keywords

Navigation