Transactions of Tianjin University

, Volume 23, Issue 3, pp 289–294 | Cite as

Fuzzy Fractional-Order Fast Terminal Sliding Mode Control for Some Chaotic Microcomponents

Research article
  • 78 Downloads

Abstract

In this paper, we propose a novel fractional-order fast terminal sliding mode control method, based on an integer-order scheme, to stabilize the chaotic motion of two typical microcomponents. We apply the fractional Lyapunov stability theorem to analytically guarantee the asymptotic stability of a system characterized by uncertainties and external disturbances. To reduce chattering, we design a fuzzy logic algorithm to replace the traditional signum function in the switching law. Lastly, we perform numerical simulations with both the fractional-order and integer-order control laws. Results show that the proposed control law is effective in suppressing chaos.

Keywords

Chaos control Fast terminal sliding mode Fractional calculus Fuzzy algorithm 

Notes

Acknowledgements

This study was supported by the National Natural Science Foundation of China (No. 11372210 and No. 51405343), the Research Fund for the Doctoral Program of Higher Education of China (No. 20120032110010) and Tianjin Research Program of Application Foundation and Advanced Technology (No. 12JCZDJC28000 and No. 15JCQNJC05000).

References

  1. 1.
    Andrievskii BR, Fradkov AL (2003) Control of chaos: methods and applications. I. Methods. Autom Remote Control 64(5):673–713MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Drăgănescu GE, Bereteu L, Ercuţa A et al (2010) Anharmonic vibrations of a nano-sized oscillator with fractional damping. Commun Nonlinear Sci Numer Simul 15(4):922–926MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Tavazoei MS, Haeri M (2008) Chaos control via a simple fractional-order controller. Phys Lett A 372(6):798–807CrossRefMATHGoogle Scholar
  4. 4.
    Efe MÖ (2012) A sufficient condition for checking the attractiveness of a sliding manifold in fractional order sliding mode control. Asian J Control 14(4):1118–1122MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Tang YG, Zhang XY, Zhang DL et al (2013) Fractional order sliding mode controller design for antilock braking systems. Neurocomputing 111:122–130CrossRefGoogle Scholar
  6. 6.
    Dadras S, Momeni HR (2012) Fractional terminal sliding mode control design for a class of dynamical systems with uncertainty. Commun Nonlinear Sci Numer Simul 17(1):367–377MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Yin C, Zhong SM, Chen WF (2012) Design of sliding mode controller for a class of fractional-order chaotic systems. Commun Nonlinear Sci Numer Simul 17(1):356–366MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Delavari H, Ghaderi R, Ranjbar A et al (2010) Fuzzy fractional order sliding mode controller for nonlinear systems. Commun Nonlinear Sci Numer Simul 15(4):963–978MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Podlubny I (1998) Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Academic Press, New YorkMATHGoogle Scholar
  10. 10.
    Li CP, Deng WH (2007) Remarks on fractional derivatives. Appl Math Comput 187(2):777–784MathSciNetMATHGoogle Scholar
  11. 11.
    Li Y, Chen YQ, Podlubny I (2010) Stability of fractional-order nonlinear dynamic systems: lyapunov direct method and generalized Mittag-Leffler stability. Comput Math Appl 59(5):1810–1821MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Yu SH, Yu XH, Shirinzadeh B et al (2005) Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica 41(11):1957–1964MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Aghababa MP (2013) A switching fractional calculus-based controller for normal non-linear dynamical systems. Nonlinear Dyn 75(3):577–588MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Yau HT, Wang CC, Hsieh CT et al (2011) Nonlinear analysis and control of the uncertain micro-electro-mechanical system by using a fuzzy sliding mode control design. Comput Math Appl 61(8):1912–1916MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Oustaloup A, Levron F, Mathieu B et al (2000) Frequency-band complex noninteger differentiator: characterization and synthesis. IEEE Trans Circ Syst I Fund Theory Appl 47(1):25–39CrossRefGoogle Scholar
  16. 16.
    Haghighi HS, Markazi AHD (2010) Chaos prediction and control in MEMS resonators. Commun Nonlinear Sci Numer Simul 15(10):3091–3099CrossRefGoogle Scholar
  17. 17.
    Bahrami A, Nayfeh AH (2012) On the dynamics of tapping mode atomic force microscope probes. Nonlinear Dyn 70(2):1605–1617CrossRefGoogle Scholar
  18. 18.
    Basso M, Giarre L, Dahleh M et al (2000) Complex dynamics in a harmonically excited Lennard-Jones oscillator: microcantilever-sample interaction in scanning probe microscopes. J Dyn Syst Meas Control Trans ASME 122(1):240–245CrossRefGoogle Scholar

Copyright information

© Tianjin University and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Jianxin Han
    • 1
    • 2
    • 3
  • Qichang Zhang
    • 1
    • 3
  • Wei Wang
    • 1
    • 3
  • Jing Wang
    • 1
    • 3
  1. 1.School of Mechanical EngineeringTianjin UniversityTianjinChina
  2. 2.Tianjin Key Laboratory of High Speed Cutting and Precision MachiningTianjin University of Technology and EducationTianjinChina
  3. 3.Tianjin Key Laboratory of Nonlinear Dynamics and ControlTianjinChina

Personalised recommendations