Transactions of Tianjin University

, Volume 23, Issue 3, pp 221–229 | Cite as

Synthesis and Application of Novel Triazine-Based Charring-Foaming Agents in Intumescent Flame Retardant Polypropylene

  • Ligong Chen
  • Yanyan Yuan
  • Bowei Wang
  • Na Liu
  • Yuzhi Xing
  • Yang Li
Research article


Three novel triazine-based charring-foaming agents (M2-CFA, M4-CFA, and M6-CFA) were synthesized successfully with only water as the solvent and were characterized by FT-IR and thermal gravimetric analysis (TGA). These three charring-foaming agents and the byproduct 944-by were employed to study the effectiveness of the novel intumescent flame retardant dopant on the fire retardancy of polypropylene(PP) investigated through UL-94 and limiting oxygen index (LOI) tests. TGA results showed that the M4-CFA presented good char formation ability (char residue: 26.8% at 700 °C). It was found that the sample with a 2/1 mass ratio of APP to M4-CFA exhibited the best flame retardancy among all the PP composites: 35.5% LOI and a V-0 rating of UL-94. Additionally, the microstructure and morphology of char residues were further studied by XRD, Raman spectroscopy and SEM.


Triazine-based charring-foaming agent Intumescent flame retardant Thermal stability Polypropylene 


  1. 1.
    Wen PY, Wang XF, Wang BB et al (2014) One-pot synthesis of a novel-s-triazine-based hyperbranched charring foaming agent and its enhancement on flame retardancy and water resistance of polypropylene. Polym Degrad Stab 110:165–174CrossRefGoogle Scholar
  2. 2.
    Feng CM, Zhang Y, Liu SW et al (2012) Synthesis of novel triazine charring agent and its effect in intumescent flame-retardant polypropylene. J Appl Polym Sci 123(6):3208–3216CrossRefGoogle Scholar
  3. 3.
    Chen SJ, Li J, Zhu YK et al (2013) Increasing the efficiency of intumescent flame retardant polypropylene catalyzed by polyoxometalate based ionic liquid. J Mater Chem A 1(48):15242–15246CrossRefGoogle Scholar
  4. 4.
    Feng Y, Tang WW, Huang YY et al (2014) (Solid +(plus) liquid) phase equilibria of tetraphenyl piperazine-1,4-diyldiphosphonate in pure solvents. J Chem Thermodyn 78:143–151CrossRefGoogle Scholar
  5. 5.
    Feng Y, Dai H, Gao WS et al (2015) Measurement and correlation of solubility of tetraphenyl piperazine-1,4-diyldiphosphonate in mixed solvents. J Chem Eng Data 60(3):561–567CrossRefGoogle Scholar
  6. 6.
    Wang DY, Cai XX, Qu MH et al (2008) Preparation and flammability of a novel intumescent flame-retardant poly (ethylene-co-vinyl acetate) system. Polym Degrad Stab 93(12):2186–2192CrossRefGoogle Scholar
  7. 7.
    You GY, Cheng ZQ, Peng H et al (2014) The synthesis and characterization of a novel phosphorus-Nitrogen containing flame retardant and its application in epoxy resins. J Appl Polym Sci 131(22):547–557Google Scholar
  8. 8.
    Liu JC, Yu ZL, Shi YZ et al (2014) A preliminary study on the thermal degradation behavior and flame retardancy of high impact polystyrene/magnesium hydroxide/microencapsulated red phosphorus composite with a gradient structure. Polym Degrad Stab 105(1):21–30CrossRefGoogle Scholar
  9. 9.
    Xing WY, Song L, Lu HD et al (2009) Flame retardancy and thermal degradation of intumescent flame retardant polypropylene with MP/TPMP. Polym Adv Technol 20(8):696–702CrossRefGoogle Scholar
  10. 10.
    Su XQ, Yi YW, Tao J et al (2014) Synergistic effect between a novel triazine charring agent and ammonium polyphosphate on flame retardancy and thermal behavior of polypropylene. Polym Degrad Stab 105(1):12–20CrossRefGoogle Scholar
  11. 11.
    Li HX, Ning NY, Zhang LQ et al (2014) Different flame retardancy effects and mechanisms of aluminium phosphinate in PPO, TPU and PP. Polym Degrad Stab 105(7):86–95CrossRefGoogle Scholar
  12. 12.
    Xie F, Wang YZ, Yang B et al (2006) A novel intumescent flame-retardant polyethylene system. Macromol Mater Eng 291(3):247–253CrossRefGoogle Scholar
  13. 13.
    Wang JJ, Ren Q, Zheng WG et al (2014) Improved flame-retardant properties of poly (lactic acid) foams using starch as a natural charring agent. Ind Eng Chem Res 53(4):1422–1430CrossRefGoogle Scholar
  14. 14.
    Enescu D, Frache A, Lavaselli M et al (2013) Novel phosphorous-nitrogen intumescent flame retardant system. Its effects on flame retardancy and thermal properties of polypropylene. Polym Degrad Stab 98(1):297–305CrossRefGoogle Scholar
  15. 15.
    Feng CM, Li ZW, Liang MY et al (2015) Preparation and characterization of a novel oligomeric charring agent and its application in halogen-free flame retardant polypropylene. J Anal Appl Pyrol 111:238–246CrossRefGoogle Scholar
  16. 16.
    Cantatore Giuseppe. Piperidyl derivatives of triazine copolymers, processes for their preparation and stabilized composition containing these derivatives: US, 4,459,395. 1984-07-10Google Scholar
  17. 17.
    Braun D, Ghahary R, Ziser T (1995) Triazine-based polymers, 3. synthesis and characterization of polyamines. Die Angewandte Makromolekulare Chemie 233(1):121–131CrossRefGoogle Scholar
  18. 18.
    Zhan J, Song L, Nie SB et al (2009) Combustion properties and thermal degradation behavior of polylactide with an effective intumescent flame retardant. Polym Degrad Stab 94(3):291–296CrossRefGoogle Scholar
  19. 19.
    Li B, Xu MJ (2006) Effect of a novel charring-foaming agent on flame retardancy and thermal degradation of intumescent flame retardant polypropylene. Polym Degrad Stab 91(6):1380–1386CrossRefGoogle Scholar
  20. 20.
    Yang K, Xu MJ, Li B (2013) Synthesis of N-ethyl triazine-piperazine copolymer and flame retardancy and water resistance of intumescent flame retardant polypropylene. Polym Degrad Stab 98(7):1397–1406CrossRefGoogle Scholar
  21. 21.
    Wen PY, Wang XF, Xing WY et al (2013) Synthesis of a novel triazine-based hyperbranched char foaming agent and the study of its enhancement on flame retardancy and thermal stability of polypropylene. Ind Eng Chem Res 52(48):17015–17022CrossRefGoogle Scholar
  22. 22.
    Deng CL, Du SL, Zhao J et al (2014) An intumescent flame retardant polypropylene system with simultaneously improved flame retardancy and water resistance. Polym Degrad Stab 108:97–107CrossRefGoogle Scholar
  23. 23.
    Han JP, Liang GZ, Gu AJ et al (2013) A novel inorganic-organic hybridized intumescent flame retardant and its super flame retarding cyanate ester resins. J Mater Chem A 1(6):2169–2182CrossRefGoogle Scholar
  24. 24.
    Yi JS, Liu Y, Pan DD et al (2013) Synthesis, thermal degradation, and flame retardancy of a novel charring agent aliphatic—aromatic polyamide for intumescent flame retardant polypropylene. J Appl Polym Sci 127(2):1061–1068CrossRefGoogle Scholar
  25. 25.
    Ma HY, Fang ZP (2012) Synthesis and carbonization chemistry of a phosphorous-nitrogen based intumescent flame retardant. Thermochim Acta 543:130–136CrossRefGoogle Scholar
  26. 26.
    Zou LH, Huang BY, Huang Y et al (2003) An investigation of heterogeneity of the degree of graphitization in carbon-carbon composites. Mater Chem Phys 82(3):654–662CrossRefGoogle Scholar
  27. 27.
    Centeno A, Blanco C, Santamaria R et al (2012) Further studies on the use of Raman spectroscopy and X-ray diffraction for the characterization of TiC-containing carbon-carbon composites. Carbon 50(9):3240–3246CrossRefGoogle Scholar
  28. 28.
    Sheng CD (2007) Char structure characterized by Raman spectroscopy and its correlations with combustion reactivity. Fuel 86(15):2316–2324CrossRefGoogle Scholar
  29. 29.
    Wang Y, Alsmeyer DC, Richard LM (1990) Raman spectroscopy of carbon material: structural basis of observed spectra. Chem Mater 2(5):557–563CrossRefGoogle Scholar
  30. 30.
    Shao ZB, Deng C, Tan Y et al (2014) Ammonium polyphosphate chemically-modified with ethanolamine as an efficient intumescent flame retardant for polypropylene. J Mater Chem A 2(34):13955–13965CrossRefGoogle Scholar

Copyright information

© Tianjin University and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Ligong Chen
    • 1
    • 2
  • Yanyan Yuan
    • 1
    • 2
  • Bowei Wang
    • 1
    • 2
  • Na Liu
    • 1
    • 2
  • Yuzhi Xing
    • 1
    • 2
  • Yang Li
    • 1
    • 2
  1. 1.School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina
  2. 2.Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)TianjinChina

Personalised recommendations