Skip to main content
Log in

Inductorless CMOS Low Noise Amplifier for Multiband Application in 0.1–1.2 GHz

  • Research article
  • Published:
Transactions of Tianjin University Aims and scope Submit manuscript

Abstract

A 0.18 µm CMOS low noise amplifier (LNA) by utilizing noise-canceling technique was designed and implemented in this paper. Current-reuse and self-bias techniques were used in the first stage to achieve input matching and reduce power consumption. The core size of the proposed CMOS LNA circuit without inductor was only 128 µm × 226 µm. The measured power gain and noise figure of the proposed LNA were 20.6 and 1.9 dB, respectively. The 3-dB bandwidth covers frequency from 0.1 to 1.2 GHz. When the chip was operated at a supply voltage of 1.8 V, it consumed 25.69 mW. The high performance of the proposed LNA makes it suitable for multi-standard low-cost receiver front-ends within the above frequency range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chang JH, Kim HJ, Choi JH et al (2010) A multistandard multiband mobile TV RF SoC in 65 nm CMOS. In: IEEE international solid-state circuits conference, pp 462–463

  2. Bagheri R, Mirzaei A, Chehrazi S et al (2006) An 800-MHz-6-GHz software-defined wireless receiver in 90-nm CMOS. IEEE J Solid State Circuits 41:2860–2876

    Article  Google Scholar 

  3. Moon H, Han J, Choi SI et al (2010) An area-efficient 0.13-µm CMOS multiband WCDMA/HSDPA receiver. IEEE Trans Microw Theory Tech 58:1447–1455

    Article  Google Scholar 

  4. Kim H, Kang S, Chang JH et al (2010) A multi-standard multi-band tuner for mobile TV SoC with GSM interoperability. In: IEEE radio frequency integrated circuits symposium, pp 189–192

  5. Yang GL, Liu F, Muhammad A et al (2013) 30–50 GHz high-gain CMOS UWB LNA. Electron Lett 49:1622–1623

    Article  Google Scholar 

  6. Liu RC, Lin CS, Deng KL et al (2003) A 0.5–14-GHz 10.6-dB CMOS cascode distributed amplifier. In: Symposium on VLSI circuits, pp 139–140

  7. Feng C, Yu XP, Lu ZH et al (2013) 3–10 GHz self-biased resistive-feedback LNA with inductive source degeneration. Electron Lett 49:387–388

    Article  Google Scholar 

  8. Chung T, Lee H, Jeong D et al (2015) A wideband CMOS noise-canceling low-noise amplifier with high linearity. IEEE Microw Wirel Compon Lett 25:547–549

    Article  Google Scholar 

  9. Oh NJ (2011) A low-power 3.1-10.6 GHz ultra-wideband CMOS low-noise amplifier with common-gate input stage. Curr Appl Phys 11:87–92

    Article  Google Scholar 

  10. Li CH, Kuo CN, Kuo MC (2012) A 1.2-V 5.2-mW 20–30-GHz wideband receiver front-end in 0.18-μm CMOS. IEEE Trans Microw Theory Tech 60:3502–3512

    Article  Google Scholar 

  11. Lu Y, Yeo KS, Cabuk A et al (2006) A novel CMOS low-noise amplifier design for 3.1- to 10.6-GHz ultra wide band wireless receivers. IEEE Trans Circuits Syst I 53:1683–1692

    Article  Google Scholar 

  12. Yu YH, Yang YS, Chen YJE (2010) A compact wideband CMOS low noise amplifier with gain flatness enhancement. IEEE J Solid State Circuits 45:502–509

    Article  Google Scholar 

  13. Chen KH, Liu SI (2012) Inductorless wideband CMOS low-noise amplifier using noise-canceling technique. IEEE Trans Circuits Syst I 59:305–314

    Article  MathSciNet  Google Scholar 

  14. Bruccoleri F, Klumperink EAM, Nauta B (2004) Wide-band CMOS low-noise amplifier exploiting thermal noise canceling. IEEE J Solid State Circuits 39:275–282

    Article  Google Scholar 

  15. Belostotski L (2016) No noise is good noise: noise matching, noise canceling, and maybe a bit of both for wide-band LNAs. IEEE Microw Mag 17:28–40

    Article  Google Scholar 

  16. Kim J, Hoyos S, Silva-Martinez J (2010) Wideband common-gate CMOS LNA employing dual negative feedback with simultaneous noise, gain, and bandwidth optimization. IEEE Trans Microw Theory Tech 58:2340–2351

    Article  Google Scholar 

  17. Liao CF, Liu SI (2007) A broadband noise-cancelling CMOS LNA for 3.1-10.6-GHz UWB receivers. IEEE J Solid State Circuits 42:329–339

    Article  Google Scholar 

  18. Blaakmeer SC, Klumperink EAM, Leenaerts DMW et al (2008) Wideband balun-LNA with simultaneous output balancing, noise-canceling and distortion-canceling. IEEE J Solid State Circuits 43:1341–1350

    Article  Google Scholar 

  19. Kim J, Silva-Martinez J (2012) Wideband inductorless balun-LNA employing feedback for low-power low-voltage applications. IEEE Trans Microw Theory Tech 60:2833–2842

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science & Technology Major Projects (No. 2012ZX03004008), by the National Natural Science Foundation of China (No. 61376082), and by the Tianjin Natural Science Foundation (No. 13JCZDJC25900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoxuan Qin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, G., Jin, M., Tu, G. et al. Inductorless CMOS Low Noise Amplifier for Multiband Application in 0.1–1.2 GHz. Trans. Tianjin Univ. 23, 168–175 (2017). https://doi.org/10.1007/s12209-017-0040-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12209-017-0040-7

Keywords

Navigation