Skip to main content
Log in

Preparation and photocatalytic activity of BiOBr/TiO2 heterojunction nanocomposites

  • Published:
Transactions of Tianjin University Aims and scope Submit manuscript

Abstract

An efficient visible-light-responsive BiOBr/TiO2 heterojunction nanocomposite was fabricated successfully using in-situ depositing technique at room temperature by introducing BiOBr onto the surface of TiO2 nanobelts pre-prepared by hydrothermal reaction and etched with H2SO4. The obtained particles were characterized by XRD, SEM, TEM, XPS, UV-Vis DRS and PL techniques. BiOBr/TiO2 heterojunction nanocomposites with different mass ratios of m(BiOBr)/m(TiO2) were discussed in order to get the best photocatalytic activity, and BiOBr/TiO2-1.0 was proved to be the optimal mass ratio. BiOBr/TiO2-1.0 exhibited excellent photocatalytic activity in the degradation of RhB compared with TiO2 nanobelts, pure BiOBr and the mechanical mixture of TiO2 nanobelts and BiOBr. At last, a possible mechanism of photocatalytic enhancement was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li Y, White T J, Lim S H. Low-temperature synthesis and microstructural control of titania nano-particles[J]. Journal of Solid State Chemistry, 2004, 177(4): 1372–1381.

    Article  Google Scholar 

  2. Nguyen T B, Hwang M J, Ryu K S. High adsorption capacity of V-doped TiO2 for decolorization of methylene blue[J]. Applied Surface Science, 2012, 258(19): 7299–7305.

    Article  Google Scholar 

  3. Fujishima A, Rao T N, Tryk D A. Titanium dioxide photocatalysis[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2000, 1(1): 1–21.

    Article  Google Scholar 

  4. Fujishima A, Zhang X, Tryk D A. TiO2 photocatalysis and related surface phenomena[J]. Surface Science Reports, 2008, 63(12): 515–582.

    Article  Google Scholar 

  5. Asahi R, Morikawa T, Ohwaki T et al. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001, 293(5528): 269–271.

    Article  Google Scholar 

  6. Zhang J, Xie S, Ho Y S. Removal of fluoride ions from aqueous solution using modified attapulgite as adsorbent[J]. Journal of Hazardous Materials, 2009, 165(1): 218–222.

    Article  Google Scholar 

  7. Yuan R, Chen T, Fei E et al. Surface chlorination of TiO2-based photocatalysts: A way to remarkably improve photocatalytic activity in both UV and visible region[J]. ACS Catalysis, 2011, 1(3): 200–206.

    Article  Google Scholar 

  8. Tan Xin, Shi Ting, Yu Tao et al. High-reactive heterojunction TiO2/SrTiO3 nanotube arrays and its photoelectrocatalytic performance[J]. Journal of Tianjin University: Science and Technology, 2014, 47(11): 955–961(in Chinese).

    Google Scholar 

  9. Tan Xin, Hu Wenli, Yu Tao et al. Photoelectrochemical properties of heterojunction TiO2/SrTiO3 nanotube arrays with exposed TiO2 highly reactive facet[J]. Journal of Tianjin University: Science and Technology, 2016, 49(3): 253–260(in Chinese).

    Google Scholar 

  10. Yang J, Wang X, Lü X et al. Preparation and photocatalytic activity of BiOX-TiO2 composite films(X=Cl, Br, I)[J]. Ceramics International, 2014, 40(6): 8607–8611.

    Article  Google Scholar 

  11. Li L, Zhang M, Liu Y et al. Hierarchical assembly of BiOCl nanosheets onto bicrystalline TiO2 nanofiber: Enhanced photocatalytic activity based on photoinduced interfacial charge transfer[J]. Journal of Colloid and Interface Science, 2014, 435: 26–33.

    Article  Google Scholar 

  12. Zhu G, Hojamberdiev M, Tan C et al. Photodegradation of organic dyes with anatase TiO2 nanoparticles-loaded BiOCl nanosheets with exposed {001} facets under simulated solar light[J]. Materials Chemistry and Physics, 2014, 147(3): 1146–1156.

    Article  Google Scholar 

  13. Guerrero M, Altube A, García-Lecina E et al. Facile in situ synthesis of BiOCl nanoplates stacked to highly porous TiO2: A synergistic combination for environmental remediation[ J]. ACS Applied Materials & Interfaces, 2014, 6(16): 13994–14000.

    Article  Google Scholar 

  14. Liu H, Xu G, Wang J et al. Photoelectrochemical properties of TiO2 nanotube arrays modified with BiOCl nanosheets[J]. Electrochimica Acta, 2014, 130: 213–221.

    Article  Google Scholar 

  15. Liu Z, Xu X, Fang J et al. Synergistic degradation of eosin Y by photocatalysis and electrocatalysis in UV irradiated solution containing hybrid BiOCl/TiO2 particles[J]. Water, Air & Soil Pollution, 2012, 223(5): 2783–2798.

    Article  Google Scholar 

  16. Zhang L, Zhang J, Zhang W et al. Photocatalytic activity of attapulgite-BiOCl-TiO2 toward degradation of methyl orange under UV and visible light irradiation[J]. Materials Research Bulletin, 2015, 66: 109–114.

    Article  Google Scholar 

  17. Zhang J, Zhang L, Zhou S et al. Exceptional visible-lightinduced photocatalytic activity of attapulgite-BiOBr-TiO2 nanocomposites[J]. Applied Clay Science, 2014, 90: 135–140.

    Article  Google Scholar 

  18. Wang X, Yang W, Li F et al. Construction of amorphous TiO2/BiOBr heterojunctions via facets coupling for enhanced photocatalytic activity[J]. Journal of Hazardous Materials, 2015, 292: 126–136.

    Article  Google Scholar 

  19. Wei X X, Cui H, Guo S et al. Hybrid BiOBr-TiO2 nanocomposites with high visible light photocatalytic activity for water treatment[J]. Journal of Hazardous Materials, 2013, 263: 650–658.

    Article  Google Scholar 

  20. Zhang Y, Liu S, Xiu Z et al. TiO2/BiOI heterostructured nanofibers: Electrospinning-solvothermal two-step synthesis and visible-light photocatalytic performance investigation[ J]. Journal of Nanoparticle Research, 2014, 16(5): 2375–2383.

    Article  Google Scholar 

  21. Zhang X, Zhang L, Xie T et al. Low-temperature synthesis and high visible-light-induced photocatalytic activity of BiOI/TiO2 heterostructures[J]. The Journal of Physical Chemistry C, 2009, 113(17): 7371–7378.

    Article  Google Scholar 

  22. Dai G, Yu J, Liu G. Synthesis and enhanced visible-light photoelectrocatalytic activity of p-n junction BiOI/TiO2 nanotube arrays[J]. The Journal of Physical Chemistry C, 2011, 115(15): 7339–7346.

    Article  Google Scholar 

  23. Li Y, Wang J, Liu B et al. BiOI-sensitized TiO2 in phenol degradation: A novel efficient semiconductor sensitizer[J]. Chemical Physics Letters, 2011, 508(1): 102–106.

    Article  MathSciNet  Google Scholar 

  24. Shi Xiaojing, Chen Xin, Chen Xiliang et al. PVP assisted hydrothermal synthesis of BiOBr hierarchical nanostructures and high photocatalytic capacity[J]. Chemical Engineering Journal, 2013, 222: 120–127.

    Article  Google Scholar 

  25. Yu C, Cao F, Li G et al. Novel noble metal(Rh, Pd, Pt)/BiOX(Cl, Br, I)composite photocatalysts with enhanced photocatalytic performance in dye degradation[J]. Separation and Purification Technology, 2013, 120: 110–122.

    Article  Google Scholar 

  26. Shang M, Wang W, Zhang L. Preparation of BiOBr lamellar structure with high photocatalytic activity by CTAB as Br source and template[J]. Journal of Hazardous Materials, 2009, 167(1): 803–809.

    Article  Google Scholar 

  27. Zhang D, Li J, Wang Q et al. High {001} facets dominated BiOBr lamellas: Facile hydrolysis preparation and selective visible-light photocatalytic activity[J]. Journal of Materials Chemistry A, 2013, 1(30): 8622–8629.

    Article  Google Scholar 

  28. Yang Z, Li J, Cheng F et al. BiOBr/protonated graphitic C3N4 heterojunctions: Intimate interfaces by electrostatic interaction and enhanced photocatalytic activity[J]. Journal of Alloys and Compounds, 2015, 634: 215–222.

    Article  Google Scholar 

  29. Chang F, Li C, Chen J et al. Enhanced photocatalytic performance of g-C3N4 nanosheets-BiOBr hybrids[J]. Superlattices and Microstructures, 2014, 76: 90–104.

    Article  Google Scholar 

  30. Ye L, Liu J, Jiang Z et al. Facets coupling of BiOBr-gC3N4 composite photocatalyst for enhanced visible-light-driven photocatalytic activity[J]. Applied Catalysis B: Environmental, 2013, 142: 1–7.

    Google Scholar 

  31. Fu J, Tian Y, Chang B et al. BiOBr-carbon nitride heterojunctions: Synthesis, enhanced activity and photocatalytic mechanism[J]. Journal of Materials Chemistry, 2012, 22(39): 21159–21166.

    Article  Google Scholar 

  32. Xia J, Di J, Yin S et al. Facile fabrication of the visiblelight-driven Bi2WO6/BiOBr composite with enhanced photocatalytic activity[J]. RSC Advances, 2014, 4(1): 82–90.

    Article  Google Scholar 

  33. Meng X, Zhang Z. Synthesis, analysis, and testing of BiOBr-Bi2WO6 photocatalytic heterojunction semiconductors[ J]. International Journal of Photoenergy, 2015: 630476.

    Google Scholar 

  34. Kong L, Jiang Z, Lai H H et al. Unusual reactivity of visible-light-responsive AgBr-BiOBr heterojunction photocatalysts[J]. Journal of Catalysis, 2012, 293: 116–125.

    Article  Google Scholar 

  35. Cao J, Xu B, Luo B et al. Novel BiOI/BiOBr heterojunction photocatalysts with enhanced visible light photocatalytic properties[J]. Catalysis Communications, 2011, 13(1): 63–68.

    Article  Google Scholar 

  36. Liu Z S, Ran H S, Wu B T et al. Synthesis and characterization of BiOI/BiOBr heterostructure films with enhanced visible light photocatalytic activity[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 452: 109–114.

    Article  Google Scholar 

  37. Meng X, Jiang L, Wang W et al. Enhanced photocatalytic activity of BiOBr/ZnO heterojunction semiconductors prepared by facile hydrothermal method[J]. International Journal of Photoenergy, 2015: 747024.

    Google Scholar 

  38. Guan M L, Ma D K, Hu S W et al. From hollow oliveshaped BiVO4 to n-p core-shell BiVO4@Bi2O3 microspheres: Controlled synthesis and enhanced visible-lightresponsive photocatalytic properties[J]. Inorganic Chemistry, 2010, 50(3): 800–805.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Yu  (于 涛).

Additional information

Supported by the National Basic Research Program of China (“973” Program, No. 2014CB239300, No. 2012CB720100), National Natural Science Foundation of China (No. 21406164, No. 21466035) and Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20110032110037, No. 20130032120019).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, X., Li, X., Yu, T. et al. Preparation and photocatalytic activity of BiOBr/TiO2 heterojunction nanocomposites. Trans. Tianjin Univ. 22, 211–217 (2016). https://doi.org/10.1007/s12209-016-2778-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12209-016-2778-8

Keywords

Navigation