Skip to main content
Log in

Two-level Bregman method for MRI reconstruction with graph regularized sparse coding

  • Published:
Transactions of Tianjin University Aims and scope Submit manuscript

Abstract

In this paper, a two-level Bregman method is presented with graph regularized sparse coding for highly undersampled magnetic resonance image reconstruction. The graph regularized sparse coding is incorporated with the two-level Bregman iterative procedure which enforces the sampled data constraints in the outer level and updates dictionary and sparse representation in the inner level. Graph regularized sparse coding and simple dictionary updating applied in the inner minimization make the proposed algorithm converge with a relatively small number of iterations. Experimental results demonstrate that the proposed algorithm can consistently reconstruct both simulated MR images and real MR data efficiently, and outperforms the current state-of-the-art approaches in terms of visual comparisons and quantitative measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lustig M, Donoho D L, Pauly J M. Sparse MRI: The application of compressed sensing for rapid MR imaging [J]. Magnetic Resonance in Medicine, 2007, 58(6): 1182–1195.

    Article  Google Scholar 

  2. Donoho D L. Compressed sensing [J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306.

    Article  MathSciNet  MATH  Google Scholar 

  3. Liang D, Liu B, Wang J et al. Accelerating SENSE using compressed sensing [J]. Magnetic Resonance in Medicine, 2009, 62(6): 1574–1584.

    Article  Google Scholar 

  4. Lustig M, Santos J M, Donoho D L et al. kt SPARSE: High frame rate dynamic MRI exploiting spatio-temporal sparsity[C]. In: Proceedings of the 13th Annual Meeting of ISMRM. Seattle, USA, 2006: 2420.

    Google Scholar 

  5. Ma S, Yin W, Zhang Y et al. An efficient algorithm for compressed MR imaging using total variation and wavelets[C]. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, Alaska, USA, 2008: 1–8.

    Google Scholar 

  6. Trzasko J, Manduca A. Highly undersampled magnetic resonance image reconstruction via homotopicminimization [J]. IEEE Transactions on Medical Imaging, 2009, 28(1): 106–121.

    Article  Google Scholar 

  7. Akçakaya M, Nam S, Hu P et al. Compressed sensing with wavelet domain dependencies for coronary MRI: A retrospective study [J]. IEEE Transactions on Medical Imaging, 2011, 30(5): 1090–1099.

    Article  Google Scholar 

  8. Chartrand R. Fast algorithms for nonconvex compressive sensing: MRI reconstruction from very few data[C]. In: Proc IEEE Int Symp Biomed Imag (ISBI). Boston, Massachusetts, USA, 2009: 262–265.

    Google Scholar 

  9. Kim Y, Nadar M S, Bilgin A. Wavelet-based compressed sensing using Gaussian scale mixtures[C]. In: Proc ISMRM. Stockholm, Sweden, 2010: 4856.

    Google Scholar 

  10. Qiu C, Lu W, Vaswani N. Real-time dynamic MR image reconstruction using Kalman filtered compressed sensing[C]. In: Proc IEEE Int Conf Acoustics, Speech, Signal Process. Taipei, Taiwan, China, 2009: 393–396.

    Google Scholar 

  11. Qu X, Zhang W, Guo D et al. Iterative thresholding compressed sensing MRI based on contourlet transform [J]. Inverse Problems in Science and Engineering, 2010, 18(6): 737–758.

    Article  MathSciNet  MATH  Google Scholar 

  12. Gho S M, Nam Y, Zho S Y et al. Three dimension double inversion recovery gray matter imaging using compressed sensing [J]. Magnetic Resonance Imaging, 2010, 28(10): 1395–1402.

    Article  Google Scholar 

  13. Guerquin-Kern M, Haberlin M, Pruessmann K P et al. A fast wavelet-based reconstruction method for magnetic resonance imaging [J]. IEEE Transactions on Medical Imaging, 2011, 30(9): 1649–1660.

    Article  Google Scholar 

  14. Chen L, Schabel M C, Di Bella E V R. Reconstruction of dynamic contrast enhanced magnetic resonance imaging of the breast with temporal constraints [J]. Magnetic Resonance Imaging, 2010, 28(5): 637–645.

    Article  Google Scholar 

  15. Ravishankar S, Bresler Y. MR image reconstruction from highly undersampled k-space data by dictionary learning [J]. IEEE Transactions on Medical Imaging, 2011, 30(5): 1028–1041.

    Article  Google Scholar 

  16. Liu Q, Wang S, Yang K et al. Highly undersampled magnetic resonance imaging reconstruction using two-level Bregman method with dictionary updating [J]. IEEE Transactions on Medical Imaging, 2013, 32(7): 1290–1301.

    Article  MathSciNet  Google Scholar 

  17. Qu X, Guo D, Ning B et al. Undersampled MRI reconstruction with patch-based directional wavelets [J]. Magnetic Resonance Imaging, 2012, 30(7): 964–977.

    Article  Google Scholar 

  18. Qu X, Hou Y, Lam F et al. Magnetic resonance image reconstruction from undersampled measurements using a patch-based nonlocal operator [J]. Medical Image Analysis, 2014, 18(6): 843–856.

    Article  Google Scholar 

  19. Zheng M, Bu J, Chen C et al. Graph regularized sparse coding for image representation [J]. IEEE Transactions on Image Processing, 2011, 20(5): 1327–1336.

    Article  MathSciNet  Google Scholar 

  20. Liu Q, Wang S, Luo J. A novel predual dictionary learning algorithm [J]. Journal of Visual Communication and Image Representation, 2012, 23(1): 182–193.

    Article  Google Scholar 

  21. Yin Wotao, Osher Stanley, Goldfarb Donald et al. Bregman iterative algorithms for 1 -minimization with applications to compressed sensing [J]. SIAM Journal on Imaging Sciences, 2008, 1(1): 143–168.

    Article  MathSciNet  MATH  Google Scholar 

  22. Osher S, Burger M, Goldfarb D et al. An iterative regularization method for total variation-based image restoration [J]. Multiscale Modeling & Simulation, 2005, 4(2): 460–489.

    Article  MathSciNet  MATH  Google Scholar 

  23. Goldstein T, Osher S. The split Bregman method for ?1 -regularized problems [J]. SIAM Journal on Imaging Sciences, 2009, 2(2): 323–343.

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang X, Burger M, Bresson X et al. Bregmanized nonlocal regularization for deconvolution and sparse reconstruction [J]. SIAM Journal on Imaging Sciences, 2010, 3(3): 253–276.

    Article  MathSciNet  MATH  Google Scholar 

  25. Ramani S, Fessler J A. Parallel MR image reconstruction using augmented Lagrangian methods [J]. IEEE Transactions on Medical Imaging, 2011, 30(3): 694–706.

    Article  Google Scholar 

  26. Chang T C, He L, Fang T. MR image reconstruction from sparse radial samples using Bregman iteration[C]. In: Proceedings of the 13th Annual Meeting of ISMRM. Seattle, USA, 2006: 696.

    Google Scholar 

  27. Liu B, King K, Steckner M et al. Regularized sensitivity encoding(SENSE)reconstruction using Bregman iterations [J]. Magnetic Resonance in Medicine, 2009, 61(1): 145–152.

    Article  Google Scholar 

  28. Liu Q, Luo J, Wang S et al. An augmented Lagrangian multi-scale dictionary learning algorithm [J]. EURASIP Journal on Advances in Signal Processing, 2011, (1): 1–16.

    Google Scholar 

  29. Du H, Lam F. Compressed sensing MR image reconstruction using a motion-compensated reference [J]. Magnetic Resonance Imaging, 2012, 30(7): 954–963.

    Article  Google Scholar 

  30. Chen Y, Hager W, Huang F et al. Fast algorithms for image reconstruction with application to partially parallel MR imaging [J]. SIAM Journal on Imaging Sciences, 2012, 5(1): 90–118.

    Article  MathSciNet  Google Scholar 

  31. Lin Q, Guo W, Fu X et al. MR image reconstruction by patch-based sparse representation [J]. Journal of Theoretical and Applied Information Technology, 2013, 49(1): 107–112.

    Google Scholar 

  32. American Radiology Services. [EB/OL]. Available: http://www3. americanradiology. com/pls/web1/wwmain. home. 2013.

  33. Ning B, Qu X, Guo D et al. Magnetic resonance image reconstruction using trained geometric directions in 2D redundant wavelets domain and non-convex optimization [J]. Magnetic Resonance Imaging, 2013, 31(9): 1611–1622.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiegen Liu  (刘且根).

Additional information

Supported by the National Natural Science Foundation of China(No. 61261010, No. 61362001, No. 61365013, No. 61262084, No. 51165033), Technology Foundation of Department of Education in Jiangxi Province(GJJ13061, GJJ14196), Young Scientists Training Plan of Jiangxi Province (No. 20133ACB21007, No. 20142BCB23001), National Post-Doctoral Research Fund(No. 2014M551867)and Jiangxi Advanced Project for Post-Doctoral Research Fund(No. 2014KY02).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Lu, H. & Zhang, M. Two-level Bregman method for MRI reconstruction with graph regularized sparse coding. Trans. Tianjin Univ. 22, 24–34 (2016). https://doi.org/10.1007/s12209-016-2581-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12209-016-2581-4

Keywords

Navigation