Skip to main content

Advertisement

Log in

Role of Calcium-Independent Phospholipase A2 VIA in Mediating Neurological Disorder and Cancer

  • Review
  • Published:
Transactions of Tianjin University Aims and scope Submit manuscript

Abstract

Calcium-independent phospholipase A2 (iPLA2) belongs to the group VI family of phospholipase superfamily (PLA2) that catalyses the hydrolysis of glycerophospholipids at the sn-2 ester bond, producing unesterified fatty acids and 2-lysophospholipids. Research interests on iPLA2 have not been as significant as those on secretary PLA2 and cytosolic PLA2. However, more efforts have been made recently on understanding the expression, regulation and biological function of iPLA2. iPLA2 plays important roles in several biological processes, including signal transduction, phospholipid remodelling, eicosanoid formation, cell proliferation, cell differentiation and apoptosis. Modulation of iPLA2 activity can have prominent effects on cellular metabolism, central nervous system and cardiovascular functions. Thus, dysregulation iPLA2 can play a vital role in the pathogenesis of several diseases. The aim of this review is to provide the current understanding of the structure, function and regulation of group VI iPLA2 and highlight its potential mechanisms of action in mediating several neurological disorders and cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Balboa MA, Balsinde J (2002) Involvement of calcium-independent phospholipase A2 in hydrogen peroxide-induced accumulation of free fatty acids in human U937 cells. J Biol Chem 277(43):40384–40389

    Article  Google Scholar 

  2. Allyson J, Bi X, Baudry M et al (2012) Maintenance of synaptic stability requires calcium-independent phospholipase A2 activity. Neural Plast 2012(2090–5904):569149

    Google Scholar 

  3. Bao S, Miller DJ, Ma Z et al (2004) Male mice that do not express group VIA phospholipase A2 produce spermatozoa with impaired motility and have greatly reduced fertility. J Biol Chem 279(37):38194–38200

    Article  Google Scholar 

  4. Bao S, Song H, Wohltmann M et al (2006) Insulin secretory responses and phospholipid composition of pancreatic islets from mice that do not express Group VIA phospholipase A2 and effects of metabolic stress on glucose homeostasis. J Biol Chem 281(30):20958–20973

    Article  Google Scholar 

  5. Morgan NV, Westaway SK, Morton JE et al (2006) PLA2G6, encoding a phospholipase A2, is mutated in neurodegenerative disorders with high brain iron. Nat Genet 38(7):52–54

    Article  Google Scholar 

  6. Thyrock A, Stehling M, Waschbüsch D et al (2010) Characterizing the interaction between the Rab6 GTPase and Mint3 via flow cytometry based FRET analysis. Biochem Biophys Res Commun 396(3):679–683

    Article  Google Scholar 

  7. Köroğlu Ç, Seven M, Tolun A (2013) Recessive truncating NALCN mutation in infantile neuroaxonal dystrophy with facial dysmorphism. Text Speech Lang Technol 50(8):585–593

    Google Scholar 

  8. Sun B, Zhang X, Yonz C et al (2010) Inhibition of calcium-independent phospholipase A2 activates p38 MAPK signalling pathways during cytostasis in prostate cancer cells. Biochem Pharmacol 79(12):1727–1735

    Article  Google Scholar 

  9. Yun HM, Park MH, Kim DH et al (2014) Loss of presenilin 2 is associated with increased iPLA2 activity and lung tumour development. Oncogene 33(44):5193–5200

    Article  Google Scholar 

  10. Janhavi S, Eickhoff CS, Hoft DF et al (2014) Absence of calcium-independent phospholipase A2β impairs platelet-activating factor production and inflammatory cell recruitment in Trypanosoma cruzi-infected endothelial cells. Physiol Rep 2(1):e00196

    Google Scholar 

  11. Ayilavarapu S, Kantarci A, Fredman G et al (2010) Diabetes-induced oxidative stress is mediated by Ca2+-independent phospholipase A2 in neutrophils. J Immunol 184(184):1507–1515

    Article  Google Scholar 

  12. Bone RN, Gai Y, Magrioti V et al (2015) Inhibition of Ca2+-independent phospholipase A2β (iPLA2β) ameliorates islet infiltration and incidence of diabetes in NOD mice. Diabetes 64(2):541–554

    Article  Google Scholar 

  13. Tan C, Day R, Bao S et al (2014) Group VIA phospholipase A2 mediates enhanced macrophage migration in diabetes mellitus by increasing expression of nicotinamide adenine dinucleotide phosphate oxidase 4. Arterioscler Thromb Vasc Biol 34(4):768–778

    Article  Google Scholar 

  14. Molloy G, Rattray M, Williams R (1998) Genes encoding multiple forms of phospholipase A2 are expressed in rat brain. Neurosci Lett 258(3):139–142

    Article  Google Scholar 

  15. Yang HC, Mosior M, Ni B et al (1999) Regional distribution, ontogeny, purification, and characterization of the Ca2+ -independent phospholipase A2, from rat brain. J Neurochem 73(3):1278–1287

    Article  Google Scholar 

  16. Lee HJ, Rao JS, Ertley RN et al (2007) Chronic fluoxetine increases cytosolic phospholipase A2 activity and arachidonic acid turnover in brain phospholipids of the unanesthetized rat. Psychopharmacology 190(1):103–115

    Article  Google Scholar 

  17. Ma Z, Ramanadham S, Kempe K et al (1997) Pancreatic islets express a Ca2+-independent phospholipase A2 enzyme that contains a repeated structural motif homologous to the integral membrane protein binding domain of ankyrin. J Biol Chem 272(17):11118–11127

    Article  Google Scholar 

  18. Ma Z, Wang X, Nowatzke W et al (1999) Human pancreatic islets express mRNA species encoding two distinct catalytically active isoforms of group VI phospholipase A2 (iPLA2) that arise from an exon. J Biol Chem 274(14):9607–9616

    Article  Google Scholar 

  19. Tang J, Kriz RW, Wolfman N et al (1997) A novel cytosolic calcium-independent phospholipase A2 contains eight ankyrin motifs. J Biol Chem 272(13):8567–8575

    Article  Google Scholar 

  20. Ackermann EJ, Kempner ES, Dennis EA (1994) Ca2+-independent cytosolic phospholipase A2 from macrophage-like P388D1 cells. Isolation and characterization. J Biol Chem 269(12):9227–9233

    Google Scholar 

  21. Mosavi Leila K, Cammett Tobin J, Desrosiers Daniel C et al (2004) The ankyrin repeat as molecular architecture for protein recognition. Protein Sci 13(6):1435–1448

    Article  Google Scholar 

  22. Manguikian AD, Barbour SE (2004) Cell cycle dependence of group VIA calcium-independent phospholipase A2 activity. J Biol Chem 279(51):52881–52892

    Article  Google Scholar 

  23. Larsson PK, Claesson HE, Kennedy BP (1998) Multiple splice variants of the human calcium-independent phospholipase A2 and their effect on enzyme activity. J Biol Chem 273(1):207–214

    Article  Google Scholar 

  24. Poulsen KA, Pedersen SF, Kolko M et al (2007) Induction of group VIA phospholipase A2 activity during in vitro ischemia in C2C12 myotubes is associated with changes in the level of its splice variants. Am J Physiol-Cell Physiol 293(5):C1605–C1615

    Article  Google Scholar 

  25. Mouchlis VD, Bucher D, Mccammon JA et al (2015) Membranes serve as allosteric activators of phospholipase A2, enabling it to extract, bind, and hydrolyze phospholipid substrates. Proc Natl Acad Sci USA 112(6):516–525

    Article  Google Scholar 

  26. Suzuki YJ, Forman HJ, Sevanian A (1997) Oxidants as stimulators of signal transduction. Free Radic Biol Med 22(1–2):269–285

    Article  Google Scholar 

  27. Wagner BA, Britigan BE, Reszka KJ et al (2002) Hydrogen peroxide-induced apoptosis of HL-60 human leukaemia cells is mediated by the oxidants hypochlorous acid and chloramines. Arch Biochem Biophys 401(2):223–234

    Article  Google Scholar 

  28. Kim SY, Jo HY, Mi HK et al (2008) H2O2-dependent hyperoxidation of peroxiredoxin 6 (Prdx6) plays a role in cellular toxicity via up-regulation of iPLA2 activity. J Biol Chem 283(48):33563–33568

    Article  Google Scholar 

  29. Xu J, Yu S, Sun AY et al (2003) Oxidant-mediated AA release from astrocytes involves cPLA2, and iPLA2. Free Radic Biol Med 34(12):1531–1543

    Article  Google Scholar 

  30. Peterson B, Knotts TB (2007) Involvement of Ca2+-independent phospholipase A2 isoforms in oxidant-induced neural cell death. Neurotoxicology 28(1):150–160

    Article  Google Scholar 

  31. Pitson SM, Moretti PA, Zebol JR et al (2002) The nucleotide-binding site of human sphingosine kinase 1. J Biol Chem 277(51):49545–49553

    Article  Google Scholar 

  32. Mancuso DJ, Jenkins CM, Gross RW (2000) The genomic organization, complete mRNA sequence, cloning, and expression of a novel human intracellular membrane-associated calcium-independent phospholipase A2. J Biol Chem 275(14):9937–9945

    Article  Google Scholar 

  33. Ma JTZ (2001) The molecular biology of the group VIA Ca2+-independent phospholipase A2. Prog Nucl Acid Res Mol Biol 67:1–33

    Article  Google Scholar 

  34. Kinghorn KJ, Castilloquan JI, Bartolome F et al (2015) Loss of PLA2G6 leads to elevated mitochondrial lipid peroxidation and mitochondrial dysfunction. Brain 138(7):1801–1816

    Article  Google Scholar 

  35. Ankyrins BV (1992) Adaptors between diverse plasma membrane proteins and the cytoplasm. J Biol Chem 267(13):8703–8706

    Google Scholar 

  36. Larsson FP, Kennedy BH (1999) The human calcium-independent phospholipase A2 gene multiple enzymes with distinct properties from a single gene. Eur J Biochem 262(2):575–585

    Article  Google Scholar 

  37. Ramanadham S, Wolf MJ, Ma Z et al (1996) Evidence for association of an ATP-stimulatable Ca(2+)-independent phospholipase A2 from pancreatic islets and HIT insulinoma cells with a phosphofructokinase-like protein. Biochemistry 35(17):5464–5471

    Article  Google Scholar 

  38. Morrison K, Witte K, Mayers JR et al (2012) Roles of acidic phospholipids and nucleotides in regulating membrane binding and activity of a calcium-independent phospholipase A2 isoform. J Biol Chem 287(46):38824–38834

    Article  Google Scholar 

  39. Wang Z, Ramanadham S, Ma ZA et al (2005) Group VIA phospholipase A2 forms a signalling complex with the calcium/calmodulin-dependent protein kinase IIbeta expressed in pancreatic islet beta-cells. J Biol Chem 280(8):6840–6849

    Article  Google Scholar 

  40. Ramanadham S, Ali T, Ashley JW et al (2015) Calcium-independent phospholipases A2 and their roles in biological processes and diseases. J Lipid Res 56(9):1643–1668

    Article  Google Scholar 

  41. Rd WJ, Mcintyre MS, Spencer B et al (1994) Endoplasmic reticulum calcium store regulates membrane potential in mouse islet beta-cells. J Biol Chem 269(20):14359–14362

    Google Scholar 

  42. Balboa MA, Balsinde J, Jones SS et al (1997) Identity between the Ca2+-independent phospholipase A2 enzymes from P388D1 macrophages and Chinese hamster ovary cells. J Biol Chem 272(13):8576–8580

    Article  Google Scholar 

  43. Cummings BS, Mchowat J, Schnellmann RG (2004) Role of an endoplasmic reticulum Ca2+-independent phospholipase A2 in cisplatin-induced renal cell apoptosis. J Pharmacol Exp Ther 308(3):921–928

    Article  Google Scholar 

  44. Akiba S, Ohno S, Chiba M et al (2002) Protein kinase Cα-dependent increase in Ca2+-independent phospholipase A2 in membranes and arachidonic acid liberation in zymosan-stimulated macrophage-like P388D 1 cells. Biochem Pharmacol 63(11):1969–1977

    Article  Google Scholar 

  45. Meyer MC, Kell PJ, Creer MH et al (2005) Calcium-independent phospholipase A2 is regulated by a novel protein kinase C in human coronary artery endothelial cells. Am J Physiol Cell Physiol 288(2):C475–C482

    Article  Google Scholar 

  46. Steer SA, Wirsig KC, Creer MH et al (2002) Regulation of membrane-associated iPLA2 activity by a novel PKC isoform in ventricular myocytes. Am J Physiol Cell Physiol 283(6):1621–1626

    Article  Google Scholar 

  47. Melendez HKTAJ (2004) FcγRI-triggered generation of arachidonic acid and eicosanoids requires iPLA2 but not cPLA2 in human monocytic cells. J Biol Chem 279(21):22505–22513

    Article  Google Scholar 

  48. Yellaturu CR, Rao GN (2003) A requirement for calcium-independent phospholipase A2 in thrombin-induced arachidonic acid release and growth in vascular smooth muscle cells. J Biol Chem 278(44):43831–43837

    Article  Google Scholar 

  49. Aoto M, Shinzawa K, Suzuki Y et al (2009) Essential role of p38 MAPK in caspase-independent, iPLA2 -dependent cell death under hypoxia/low glucose conditions. FEBS Lett 583(10):1611–1618

    Article  Google Scholar 

  50. Schenten V, Bréchard S, Plançon S et al (2010) iPLA2, a novel determinant in Ca2+—and phosphorylation-dependent S100A8/A9 regulated NOX2 activity. Biochim Biophys Acta 1803(7):840–847

    Article  Google Scholar 

  51. Talib LL, Hototian SR, Joaquim HPG et al (2015) Increased iPLA2 activity and levels of phosphorylated GSK3B in platelets are associated with donepezil treatment in Alzheimer’s disease patients. Eur Arch Psychiatry Clin Neurosci 265(8):1–6

    Article  Google Scholar 

  52. Ménard C, Patenaude C, Massicotte G (2005) Phosphorylation of AMPA receptor subunits is differentially regulated by phospholipase A2 inhibitors. Neurosci Lett 389(1):51–56

    Article  Google Scholar 

  53. Baskakis C, Magrioti V, Cotton N et al (2008) Synthesis of polyfluoro ketones for selective inhibition of human phospholipase A2 enzymes. J Med Chem 51(24):8027–8037

    Article  Google Scholar 

  54. Magrioti V, Nikolaou A, Smyrniotou A et al (2013) New potent and selective polyfluoroalkyl ketone inhibitors of GVIA calcium-independent phospholipase A2. Bioorganic Med Chem 21(18):5823–5829

    Article  Google Scholar 

  55. Kokotos G, Hsu YH, Burke JE et al (2010) Potent and selective fluoroketone inhibitors of group VIA calcium-independent phospholipase A2. J Med Chem 53(9):3602–3610

    Article  Google Scholar 

  56. Ong WY, Farooqui T, Kokotos G et al (2015) Synthetic and natural inhibitors of phospholipases A2: their importance for understanding and treatment of neurological disorders. Acs Chem Neurosci 6(6):814–831

    Article  Google Scholar 

  57. Ali T, Kokotos G, Magrioti V et al (2013) Characterization of FKGK18 as inhibitor of group VIA Ca2+-independent phospholipase A2 (iPLA2β): candidate drug for preventing beta-cell apoptosis and diabetes. PLoS One 8(8):e71748

    Article  Google Scholar 

  58. Ackermann EJ, Conde-Frieboes K, Dennis EA (1995) Inhibition of macrophage Ca2+-independent phospholipase A2 by bromoenol lactone and trifluoromethyl ketones. J Biol Chem 270(1):445–450

    Article  Google Scholar 

  59. Lio YC, Reynolds LJ, Balsinde J et al (1996) Irreversible inhibition of Ca2+ -independent phospholipase A2, by methyl arachidonyl fluorophosphonate. Biochim Biophys Acta 1302(1):55–60

    Article  Google Scholar 

  60. Conde-Frieboes K, Reynolds LJ, Lio YC et al (1996) Activated ketones as inhibitors of intracellular Ca2+-dependent and Ca2+-independent phospholipase A2. J Am Chem Soc 118(24):5519–5525

    Article  Google Scholar 

  61. Song H, Ramanadham S, Bao S et al (2006) A bromoenol lactone suicide substrate inactivates group VIA phospholipase A2 by generating a diffusible bromomethyl keto acid that alkylates cysteine thiols. Biochemistry 45(3):1061–1073

    Article  Google Scholar 

  62. Jenkins CM, Han X, Mancuso DJ et al (2002) Identification of calcium-independent phospholipase A2 (iPLA 2)β, and not iPLA 2 γ, as the mediator of arginine vasopressin-induced arachidonic acid release in A-10 smooth muscle cells. J Biol Chem 277(6):32807–32814

    Article  Google Scholar 

  63. Tsuchida K, Ibuki T, Matsumura K (2014) Bromoenol lactone, an inhibitor of calcium-independent phospholipase A2, suppresses carrageenan-induced prostaglandin production and hyperalgesia in rat hind paw. J Magn Reson Imaging 2015(3):1–7

    Google Scholar 

  64. Kurusu S, Matsui K, Watanabe T et al (2008) The cytotoxic effect of bromoenol lactone, a calcium-independent phospholipase A2, inhibitor, on rat cortical neurons in culture. Cell Mol Neurobiol 28(8):1109–1118

    Article  Google Scholar 

  65. Schaeffer EL, Gattaz WF (2005) Inhibition of calcium-independent phospholipase A2 activity in rat hippocampus impairs acquisition of short- and long-term memory. Psychopharmacology 181(2):392–400

    Article  Google Scholar 

  66. Lee SH, Schneider C, Higdon AN et al (2011) Role of iPLA 2, in the regulation of Src trafficking and microglia chemotaxis. Traffic 12(7):878–889

    Article  Google Scholar 

  67. Balsinde J, Balboa MA, Dennis EA (1997) Antisense inhibition of group VI Ca2+-independent phospholipase A2 blocks phospholipid fatty acid remodelling in murine P388D1 macrophages. J Biol Chem 272(46):29317–29321

    Article  Google Scholar 

  68. Carnevale KA, Cathcart MK (2001) Calcium-independent phospholipase A2 is required for human monocyte chemotaxis to monocyte chemoattractant protein 1. J Immunol 167(6):3414–3421

    Article  Google Scholar 

  69. Akiba S, Mizunaga S, Kume K et al (1999) Involvement of group VI Ca2+-independent phospholipase A2 in protein kinase C-dependent arachidonic acid liberation in zymosan-stimulated macrophage-like P388D1 cells. J Biol Chem 274(28):19906–19912

    Article  Google Scholar 

  70. Smani T, Zakharov SI, Leno E et al (2003) Ca2+-independent phospholipase A2 is a novel determinant of store-operated Ca2+ entry. J Biol Chem 278(14):11909–11915

    Article  Google Scholar 

  71. Xiong Su, Mancuso DJ, Bickel Perry E et al (2004) Small interfering RNA knockdown of calcium-independent phospholipases A2 β or γ inhibits the hormone-induced differentiation of 3T3-L1 Preadipocytes. J Biol Chem 279(21):21740–21748

    Article  Google Scholar 

  72. Shinzawa K, Tsujimoto Y (2003) PLA2 activity is required for nuclear shrinkage in caspase-independent cell death. J Cell Biol 163(6):1219–1230

    Article  Google Scholar 

  73. Izquierdo I, Medina JH (1997) Memory formation: the sequence of biochemical events in the hippocampus and its connection to activity in other brain structures. Neurobiol Learn Mem 68(3):285–316

    Article  Google Scholar 

  74. Izquierdo I, Medina JH, Vianna MRM et al (1999) Separate mechanisms for short- and long-term memory. Behav Brain Res 103(1):1–11

    Article  Google Scholar 

  75. Clements MP, Bliss TVP, Lynch MA (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Mol Cancer Res 13(3):575–583

    Google Scholar 

  76. Fujita S, Ikegaya Y, Nishikawa M et al (2001) Docosahexaenoic acid improves long-term potentiation attenuated by phospholipase A2 inhibitor in rat hippocampal slices. Br J Pharmacol 132(7):1417–1422

    Article  Google Scholar 

  77. Mazzocchi-Jones D (2015) Impaired corticostriatal LTP and depotentiation following iPLA2 inhibition is restored following acute application of DHA. Brain Res Bull 111:69–75

    Article  Google Scholar 

  78. Mcewen BS, Weiss JM, Schwartz LS (1968) Selective retention of corticosterone by limbic structures in rat brain. Nature 220(5170):911–912

    Article  Google Scholar 

  79. Kudielka BM, Schmidtreinwald AK, Hellhammer DH et al (2000) Psychosocial stress and HPA functioning: no evidence for a reduced resilience in healthy elderly men. Stress Int J Biol Stress 3(3):229–240

    Article  Google Scholar 

  80. Massicotte G, Ménard C, Patenaude C (2009) Calcium-independent phospholipase A2 activities in the brain: functional and pathological perspectives. Curr Top Pharmacol 13(1):31–39

    Google Scholar 

  81. Shalini SM, Chew WS, Rajkumar R et al (2014) Role of constitutive calcium-independent phospholipase A2 beta in hippocampo-prefrontal cortical long term potentiation and spatial working memory. Neurochem Int 78(6):96–104

    Article  Google Scholar 

  82. Schaeffer EL, Forlenza OV, Gattaz WF (2009) Phospholipase A2 activation as a therapeutic approach for cognitive enhancement in early-stage Alzheimer disease. Psychopharmacology 202(1–3):37–51

    Article  Google Scholar 

  83. Gattaz WF, Maras A, Cairns NJ et al (1995) Decreased phospholipase A2, activity in Alzheimer brains. Biol Psychiatry 37(1):13–17

    Article  Google Scholar 

  84. Gattaz WF, Förstl H, Braus DF et al (1996) Decreased phospholipase A2 activity in the brain and in platelets of patients with Alzheimer’s disease. Eur Arch Psychiatry Clin Neurosci 246(3):129–131

    Article  Google Scholar 

  85. Talbot K, Young RA, Jolly-Tornetta C et al (2000) A frontal variant of Alzheimer’s disease exhibits decreased calcium-independent phospholipase A2 activity in the prefrontal cortex. Neurochem Int 37(1):17–31

    Article  Google Scholar 

  86. Schaeffer EL, Depaula VJ, Silva ERD et al (2011) Inhibition of phospholipase A2 in rat brain decreases the levels of total Tau protein. J Neural Transm 118(9):1273–1279

    Article  Google Scholar 

  87. Nishizaki T, Nomura T, Matsuoka T et al (1999) Arachidonic acid as a messenger for the expression of long-term potentiation. Biochem Biophys Res Commun 254(2):446–449

    Article  Google Scholar 

  88. Gama MAS, Raposo NRB, Mury FB et al (2015) Conjugated linoleic acid-enriched butter improved memory and up-regulated phospholipase A2 encoding-genes in rat brain tissue. J Neural Transm 122(10):1–10

    Article  Google Scholar 

  89. Rocca WA (2005) Prevalence of Parkinson’s disease in China. Lancet Neurol 4(6):328–329

    Article  Google Scholar 

  90. Beck G, Shinzawa K, Hayakawa H et al (2015) Deficiency of calcium-independent phospholipase A2 Beta induces brain iron accumulation through upregulation of divalent metal transporter 1. PLoS One 10(310):168–171

    Google Scholar 

  91. Paisan-Ruiz C, Frcp KPB, Li A et al (2009) Characterization of PLA2G6 as a locus for dystonia-parkinsonism. Ann Neurol 65(1):19–23

    Article  Google Scholar 

  92. Yoshino H, Tomiyama H, Tachibana N et al (2010) Phenotypic spectrum of patients with PLA2G6 mutation and PARK14-linked parkinsonism. Neurology 75(15):1356–1361

    Article  Google Scholar 

  93. Engel LA, Jing Z, O’Brien DE et al (2010) Catalytic function of PLA2G6 is impaired by mutations associated with infantile neuroaxonal dystrophy but not dystonia-parkinsonism. PLoS One 5(9):e12897

    Article  Google Scholar 

  94. Qin P, Xu H, Laursen TM et al (2007) Risk for schizophrenia and schizophrenia-like psychosis among patients with epilepsy: population based cohort study. BMJ 331(7507):23–25

    Article  Google Scholar 

  95. Elliott B, Joyce E, Shorvon S (2009) Delusions, illusions and hallucinations in epilepsy: 2. Complex phenomena and psychosis. Epilepsy Res 85(2–3):172–186

    Article  Google Scholar 

  96. Gattaz WF, Valente KD, Raposo NR et al (2011) Increased PLA2 activity in the hippocampus of patients with temporal lobe epilepsy and psychosis. J Psychiatr Res 45(12):1617–1620

    Article  Google Scholar 

  97. Bazan NG, Zorumski CF, Clark GD (1993) The activation of phospholipase A2 and release of arachidonic acid and other lipid mediators at the synapse: the role of platelet-activating factor. Chem Commun 46(5):677–685

    Google Scholar 

  98. Li Shu Chuen (2016) Gao Lan. Emerging drugs for partial-onset epilepsy: a review of brivaracetam. Ther Clin Risk Manag 12:719–734

    Google Scholar 

  99. Aicardi J, Castelein P (1979) Infantile neuroaxonal dystrophy. J Neuropathol Exp Neurol 102(22):175–236

    Google Scholar 

  100. Zhou B, Westaway SK, Levinson B et al (2001) A novel pantothenate kinase gene (PANK2) is defective in Hallervorden-Spatz syndrome. Nat Genet 28(4):345–349

    Article  Google Scholar 

  101. Hörtnagel K, Nardocci N, Zorzi G et al (2004) Infantile neuroaxonal dystrophy and pantothenate-kinase-associated neurodegeneration: locus heterogeneity. Neurology 63(5):922–924

    Article  Google Scholar 

  102. Khateeb S, Flusser H, Ofir R et al (2006) PLA2G6 mutation underlies infantile neuroaxonal dystrophy. Am J Hum Genet 79(5):942–948

    Article  Google Scholar 

  103. Gregory A, Polster BJ, Hayflick SJ (2009) Clinical and genetic delineation of neurodegeneration with brain iron accumulation. J Med Genet 46(2):73–80

    Article  Google Scholar 

  104. Hisae S, Goichi B, Shinsuke K et al (2015) Neuroaxonal dystrophy in PLA2G6 knockout mice. Neuropathol Off J Jpn Soc Neuropathol 35(3):289–302

    Article  Google Scholar 

  105. Zhao Z, Wang J, Zhao C et al (2011) Genetic ablation of PLA2G6 in mice leads to cerebellar atrophy characterized by purkinje cell loss and glial cell activation. PLoS One 6(10):e26991

    Article  Google Scholar 

  106. Wada H, Yasuda T, Miura I et al (2009) Establishment of an improved mouse model for infantile neuroaxonal dystrophy that shows early disease onset and bears a point mutation in PLA2G6. Am J Pathol 175(6):2257–2263

    Article  Google Scholar 

  107. Song Y, Wilkins P, Hu W et al (2007) Inhibition of calcium-independent phospholipase A2 suppresses proliferation and tumorigenicity of ovarian carcinoma cells. Biochem J 406(3):427–436

    Article  Google Scholar 

  108. Yun HM, Park KR, Lee HP et al (2014) PRDX6 promotes lung tumour progression via its GPx and iPLA2 activities. Free Radic Biol Med 69(4):367–376

    Article  Google Scholar 

  109. Li H, Zhao ZG, Yan L et al (2010) Group VIA phospholipase A2 in both host and tumour cells is involved in ovarian cancer development. Faseb J 24(10):4103–4116

    Article  MathSciNet  Google Scholar 

  110. Sanchez T, Moreno JJ (2002) Calcium-independent phospholipase A2 through arachidonic acid mobilization is involved in Caco-2 cell growth. J Cell Physiol 193(3):293–298

    Article  Google Scholar 

  111. Kvaskoff M, Whiteman DC, Zhao ZZ et al (2011) Polymorphisms in nevus-associated genes MTAP, PLA2G6, and IRF4 and the risk of invasive cutaneous melanoma. Twin Res Hum Genet Off J Int Soc Twin Stud 14(5):422–432

    Article  Google Scholar 

  112. Scuderi M, Anfuso CG, Motta C et al (2008) Expression of Ca2+-independent and Ca2+-dependent phospholipases A2 and cyclooxygenases in human melanocytes and malignant melanoma cell lines. Biochim Biophys Acta 1781(10):635–642

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, C.Y., Shi, Y., Surendranath, A.R. et al. Role of Calcium-Independent Phospholipase A2 VIA in Mediating Neurological Disorder and Cancer. Trans. Tianjin Univ. 23, 1–10 (2017). https://doi.org/10.1007/s12209-016-0025-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12209-016-0025-y

Keywords

Navigation