Skip to main content

Advertisement

Log in

Novel Method for Preparing a Carbon Nanotube-Supported Cobalt Catalyst for Fischer–Tropsch Synthesis: Hydrogen Dielectric-Barrier Discharge Plasma

  • Research article
  • Published:
Transactions of Tianjin University Aims and scope Submit manuscript

Abstract

Hydrogen dielectric-barrier discharge (H2-DBD) plasma was successfully used to prepare carbon nanotubes (CNTs)-supported cobalt (Co) catalyst. The H2-DBD plasma treatment simultaneously decomposed and reduced the cobalt precursor at a lower temperature and in a shorter time than the conventional method (calcination and hydrogen reduction). It is considered that the H2-DBD plasma method can remarkably decrease the amount of energy input compared to traditional methods used to prepare the Co-based catalyst in Fischer–Tropsch synthesis (FTS). Results showed that the Co catalyst prepared by H2-DBD plasma had an equivalent catalytic performance for FTS as that prepared using the conventional method in calcination and hydrogen reduction, thereby determining that H2-DBD plasma was an effective alternative treatment for preparing the Co/CNTs catalyst for FTS. This technology will provide a new strategy for preparing catalysts in other catalysis processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abbaslou RMM, Soltan J, Dalai AK (2010) Effects of nanotubes pore size on the catalytic performances of iron catalysts supported on carbon nanotubes for Fischer–Tropsch synthesis. Appl Catal A 379(1–2):129–134

    Article  Google Scholar 

  2. Li Z, Liu R, Xu Y et al (2015) Enhanced Fischer–Tropsch synthesis performance of iron-based catalysts supported on nitric acid treated N-doped CNTs. Appl Surf Sci 347:643–650

    Article  Google Scholar 

  3. Liu R, Xu Y, Li Z et al (2016) A facile and efficient modification of CNTs for improved Fischer–Tropsch performance on iron catalyst: alkali modification. ChemCatChem 8(8):1454–1458

    Article  Google Scholar 

  4. Karimi S, Tavasoli A, Mortazavi Y et al (2015) Enhancement of cobalt catalyst stability in Fischer–Tropsch synthesis using graphene nanosheets as catalyst support. Chem Eng Res Des 104:713–722

    Article  Google Scholar 

  5. Nurunnabi M, Turn SQ (2015) Characterization of Ru/Q10 catalysts containing Zr or Mn and their activity for Fischer–Tropsch synthesis. Fuel Process Technol 138:490–499

    Article  Google Scholar 

  6. Pirola C, Scavini M, Galli F et al (2014) Fischer–Tropsch synthesis: EXAFS study of Ru and Pt bimetallic Co based catalysts. Fuel 132:62–70

    Article  Google Scholar 

  7. Fu T, Li Z (2015) Review of recent development in Co-based catalysts supported on carbon materials for Fischer–Tropsch synthesis. Chem Eng Sci 135:3–20

    Article  Google Scholar 

  8. Qian W, Zhang H, Ying W et al (2013) The comprehensive kinetics of Fischer–Tropsch synthesis over a Co/AC catalyst on the basis of CO insertion mechanism. Chem Eng J 228:526–534

    Article  MathSciNet  Google Scholar 

  9. Yu G, Sun B, Pei Y et al (2009) Fe x O y @C spheres as an excellent catalyst for Fischer–Tropsch synthesis. J Am Chem Soc 132(3):935–937

    Article  Google Scholar 

  10. Bezemer GL, Bitter JH, Kuipers HPCE et al (2006) Cobalt particle size effects in the Fischer–Tropsch reaction studied with carbon nanofiber supported catalysts. J Am Chem Soc 128(12):3956–3964

    Article  Google Scholar 

  11. Tavasoli A, Sadagiani K, Khorashe F et al (2008) Cobalt supported on carbon nanotubes: a promising novel Fischer–Tropsch synthesis catalyst. Fuel Process Technol 89(5):491–498

    Article  Google Scholar 

  12. Chu W, Xu J, Hong J et al (2015) Design of efficient Fischer–Tropsch cobalt catalysts via plasma enhancement: reducibility and performance (review). Catal Today 256:41–48

    Article  Google Scholar 

  13. Blanchard J, Abatzoglou N (2014) Nano-iron carbide synthesized by plasma as catalyst for Fischer–Tropsch synthesis in slurry reactors: the role of iron loading and K, Cu promoters. Catal Today 237:150–156

    Article  Google Scholar 

  14. Bai S, Huang C, Lv J et al (2012) Performance of cobalt-based Fischer–Tropsch synthesis catalysts using dielectric-barrier discharge plasma as an alternative to thermal calcination. Plasma Sci Technol 14(1):54–57

    Article  Google Scholar 

  15. Shi P, Liu C (2009) Characterization of silica supported nickel catalyst for methanation with improved activity by room temperature plasma treatment. Catal Lett 133(1–2):112–118

    Article  Google Scholar 

  16. Chu W, Wang LN, Chernavskii PA et al (2008) Glow-discharge plasma-assisted design of cobalt catalysts for Fischer–Tropsch synthesis. Angew Chem Int Ed Engl 47(27):5052–5055

    Article  Google Scholar 

  17. Hong J, Chu W, Chernavskii PA et al (2010) Cobalt species and cobalt-support interaction in glow discharge plasma-assisted Fischer–Tropsch catalysts. J Catal 273(1):9–17

    Article  Google Scholar 

  18. Nozaki T, Okazaki K (2013) Non-thermal plasma catalysis of methane: principles, energy efficiency, and applications. Catal Today 211:29–38

    Article  Google Scholar 

  19. Fu T, Huang C, Lv J et al (2014) Fischer–Tropsch performance of an SiO2-supported Co-based catalyst prepared by hydrogen dielectric-barrier discharge plasma. Plasma Sci Technol 16(3):232–238

    Article  Google Scholar 

  20. Kuchenbecker M, Bibinov N, Kaemlimg A et al (2009) Characterization of DBD plasma source for biomedical applications. J Phys D Appl Phys 42(4):045212

    Article  Google Scholar 

  21. Liu Y, Wang Z, Liu C (2015) Mechanism of template removal for the synthesis of molecular sieves using dielectric barrier discharge. Catal Today 256:137–141

    Article  Google Scholar 

  22. Guo Y, Ye D, Chen K et al (2007) Toluene removal by a DBD-type plasma combined with metal oxides catalysts supported by nickel foam. Catal Today 126(3–4):328–337

    Article  Google Scholar 

  23. Fu T, Huang C, Lv J et al (2014) Fuel production through Fischer–Tropsch synthesis on carbon nanotubes supported Co catalyst prepared by plasma. Fuel 121:225–231

    Article  Google Scholar 

  24. Todic B, Ma W, Jacobs G et al (2014) CO-insertion mechanism based kinetic model of the Fischer–Tropsch synthesis reaction over Re-promoted Co catalyst. Catal Today 228:32–39

    Article  Google Scholar 

  25. Morishita K, Takarada T (1999) Scanning electron microscope observation of the purification behaviour of carbon nanotubes. J Mater Sci 34(6):1169–1174

    Article  Google Scholar 

  26. Wu L, Li Z, Han D et al (2015) A preliminary evaluation of ZSM-5/SBA-15 composite supported Co catalysts for Fischer–Tropsch synthesis. Fuel Process Technol 134:449–455

    Article  Google Scholar 

  27. Zhang Q, Kang J, Wang Y (2010) Development of novel catalysts for Fischer–Tropsch synthesis: tuning the product selectivity. ChemCatChem 2(9):1030–1058

    Article  Google Scholar 

Download references

Acknowledgements

Supported by the National Natural Science Foundation of China (No. 21506154) and the program for New Century Excellent Talents in University of Ministry of Education of China (NCET-06-0239).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weihan Wang or Jing Lv.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, ., Liu, R., Liu, R. et al. Novel Method for Preparing a Carbon Nanotube-Supported Cobalt Catalyst for Fischer–Tropsch Synthesis: Hydrogen Dielectric-Barrier Discharge Plasma. Trans. Tianjin Univ. 23, 20–25 (2017). https://doi.org/10.1007/s12209-016-0018-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12209-016-0018-x

Keywords

Navigation