Skip to main content
Log in

Preparation of carbon encapsulated iron nanoparticles with very thin shells by DC arc discharge

  • Published:
Transactions of Tianjin University Aims and scope Submit manuscript

Abstract

Carbon encapsulated iron nanoparticles (CEINPs) with very thin shells and good core-shell structures were prepared by DC arc discharge at argon intake temperature (AIT) of 800 °C. The results of high resolution transmission electron microscope (HRTEM), energy dispersive X-ray (EDX) spectroscope, X-ray diffraction (XRD), and X-ray photoelectron spectroscope (XPS) characterizations on the product B show that the thickness of the carbon shells of CEINPs in the product B is in the range of ca. 0.5–5.3 nm, i. e., which can be as thin as only two layers of graphite. The average diameter of the CEINPs is about 24.7 nm. The total content of Fe element in the product B is 77.0 wt%. The saturation magnetization (M s) and coercivity (H c) of the product B are 107.4 emu/g and 143 Oe, respectively. The formation of the CEINPs in the product B is discussed briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shi G M, Zhang Z D, Yang H C. Al2O3/Fe2O3 compositecoated polyhedral Fe nanoparticles prepared by arc discharge[J]. Journal of Alloys and Compounds, 2004, 384(1/2): 296–299.

    Article  Google Scholar 

  2. Bystrzejewski M, Károly Z, Szépvölgyi J et al. Continuous synthesis of controlled size carbon-encapsulated iron nanoparticles [J]. Materials Research Bulletin, 2011, 46(12): 2408–2417.

    Article  Google Scholar 

  3. Wang Z H, Zhang Z D, Choi C J et al. Structure and magnetic properties of Fe(C) and Co(C) nanocapsules prepared by chemical vapor condensation [J]. Journal of Alloys and Compounds, 2003, 361(1/2): 289–293.

    Article  Google Scholar 

  4. Zhu G X, Wei X W, Jiang S. A-facile route to carboncoated nickel-based nanoparticles [J]. Journal of Materials Chemistry, 2007, 17(22): 2301–2306.

    Article  Google Scholar 

  5. Scott J H J, Chowdary K, Turgut Z et al. Neutron powder diffraction of carbon-coated FeCo alloy nanoparticles [J]. Journal of Applied Physics, 1999, 85(8): 4409–4411.

    Article  Google Scholar 

  6. Wang B B, Kong Q S, Quan F Y et al. Preparation of nanostructured porous carbon composite fibers from ferrum alginate fibers [J]. Journal of Applied Polymer Science, 2013, 128(3): 2216–2223.

    Google Scholar 

  7. Bystrzejewski M, Cudzilo S, Huczko A. Thermal stability of carbon-encapsulated Fe-Nd-B nanoparticles [J]. Journal of Alloys and Compounds, 2006, 423(1/2): 74–76.

    Article  Google Scholar 

  8. Seo W S, Lee J H, Sun X et al. FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents [J]. Nature Materials, 2006, 5(12): 971–975.

    Article  Google Scholar 

  9. Qiu J S, Li Y F, Wang Y P et al. Preparation of carboncoated magnetic iron nanoparticles from composite rods made from coal and iron powders [J]. Fuel Processing Technology, 2004, 86(3): 267–274.

    Article  Google Scholar 

  10. Yu C, Qiu J S. Preparation and magnetic behavior of carbon-encapsulated cobalt and nickel nanoparticles from starch [J]. Chemical Engineering Research and Design, 2008, 86(8): 904–908.

    Article  Google Scholar 

  11. Liu X G, Or S W, Sun Y P et al. Influence of a graphite shell on the thermal, magnetic and electromagnetic characteristics of Fe nanoparticles [J]. Journal of Alloys and Compounds, 2012, 548: 239–244.

    Article  Google Scholar 

  12. Wang Z F, Xiao P F, He N Y et al. Synthesis and characteristics of carbon encapsulated magnetic nanoparticles produced by a hydrothermal reaction [J]. Carbon, 2006, 44(15): 3277–3284.

    Article  Google Scholar 

  13. Zhang F, Cui L, Lin K et al. Preparation of carbonencapsulated iron nanoparticles in high yield by DC arc discharge and their characterization [J]. Journal of Alloys and Compounds, 2013, 553(4): 367–374.

    Article  Google Scholar 

  14. Wu W Z, Zhu Z P, Liu Z Y et al. Preparation of carbonencapsulated iron carbide nanoparticles by an explosion method [J]. Carbon, 2003, 41(2): 317–321.

    Article  Google Scholar 

  15. Ma C, Luo B, Song H H et al. Preparation of carbonencapsulated metal magnetic nanoparticles by an instant pyrolysis method [J]. New Carbon Materials, 2010, 25(3): 199–204.

    Article  Google Scholar 

  16. Wang Z H, Han Z, Geng D Y et al. Synthesis, characterization and microwave absorption of carbon-coated Sn nanorods [J]. Chemical Physics Letter, 2010, 489(4/5/6): 187–190.

    Article  Google Scholar 

  17. Rechenberg H R, Coaquira J A H, Marquina C et al. Mössbauer and magnetic characterization of carbon-coated small iron particles [J]. Journal of Magnetism and Magnetic Materials, 2001, 226/227/228/229/230: 1930–1932.

    Article  Google Scholar 

  18. Wu Z S, Ren W C, Gao L B et al. Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation [J]. ACS Nano, 2009, 3(2): 411–417.

    Article  Google Scholar 

  19. Zhang X F, Dong X L, Huang H et al. High permittivity from defective carbon-coated Cu nanocapsules [J]. Nanotechnology, 2007, 18(27): 275701.

    Article  Google Scholar 

  20. Zhang Z D, Yu J L, Zheng J G et al. Structure and magnetic properties of boron-oxide-coated Fe(B) nanocapsules prepared by arc discharge in diborane [J]. Physical Review B: Condensed Matter and Materials Physics, 2001, 64(2): 024404.

    Article  Google Scholar 

  21. Cui S, Scharff P, Siegmund C et al. Investigation on preparation of multiwalled carbon nanotubes by DC arc discharge under N2 atmosphere [J]. Carbon, 2004, 42(5/6): 931–939.

    Article  Google Scholar 

  22. Chung F C, Wu R J, Cheng F C. Fabrication of a Au@SnO2 core-shell structure for gaseous formal-dehyde sensing at room temperature [J]. Sensors and Actuators B: Chemical, 2014, 190: 1–7.

    Article  Google Scholar 

  23. Park E, Zhang J Q, Thomson S et al. Characterization of phases formed in the iron carbide process by X-Ray diffraction, Mössbauer, X-Ray photoelectron spectroscopy, and Raman spectroscopy analyses [J]. Metallurgical and Materials Transactions B, 2001, 32B(5): 839–845.

    Article  Google Scholar 

  24. Cao Q, Coulombe S. Organic layer-coated metal nanoparticles prepared by a combined arc evaporation/condensation and plasma polymerization process [J]. Plasma Sources Science and Technology, 2007, 16(2): 240–249.

    Article  Google Scholar 

  25. Edwards E R, Antunes E F, Botelho E C et al. Evaluation of residual iron in carbon nanotubes purified by acid treatments [J]. Applied Surface Science, 2011, 258(2): 641–648.

    Article  Google Scholar 

  26. Zhou J S, Song H H, Chen X H et al. Oxidation conversion of carbon-encapsulated metal nanoparticles to hollow nanoparticles [J]. Chemistry of Materials, 2009, 21(15): 3730–3737.

    Article  Google Scholar 

  27. Liu X G, Ou Z Q, Geng D Y et al. Influence of a graphite shell on the thermal and electromagnetic characteristics of FeNi nanoparticles [J]. Carbon, 2010, 48(3): 891–897.

    Article  Google Scholar 

  28. Chaira D, Mishra B K, Sangal S et al. Efficient synthesis and characterization of iron carbide powder by reaction milling [J]. Powder Technology, 2009, 191(1/2): 149–154.

    Article  Google Scholar 

  29. Pol V G, Wildermuth G, Felsche J et al. Sonochemical deposition of Au nanoparticles on titania and the significant decrease in the melting point of gold [J]. Journal of Nanoscience and Nanotechnology, 2005, 5(6): 975–979.

    Article  Google Scholar 

  30. Panchal V, Neergat M, Bhandarkar U. Synthesis and characterization of carbon coated nanoparticles produced by a continuous low-pressure plasma process [J]. Journal of Nanoparticle Research, 2011, 13(9): 3825–3833.

    Article  Google Scholar 

  31. Kim S, Sergiienko R, Shibata E et al. Iron-included carbon nanocapsules coated with biocompatible poly(ethylene glycol) shells [J]. Materials Chemistry and Physics, 2010, 122(1): 164–168.

    Article  Google Scholar 

  32. Bystrzejewski M, Grabias A. Tailoring phase composition in carbon-encapsulated iron nanoparticles [J]. Materials Characterization, 2011, 62(1): 152–156.

    Article  Google Scholar 

  33. Sajitha E P, Prasad V, Subramanyam S V et al. Synthesis and characteristics of iron nanoparticles in a carbon matrix along with the catalytic graphitization of amorphous carbon [J]. Carbon, 2004, 42(14): 2815–2820.

    Article  Google Scholar 

  34. Weissker U, Lofler M, Wolny F et al. Perpendicular magnetization of long iron carbide nanowires inside carbon nanotubes due to magnetocrystalline anisotropy [J]. Journal of Applied Physics, 2009, 106(5): 054909.

    Article  Google Scholar 

  35. Jun Y W, Seo J W, Cheon J W. Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences [J]. Accounts of Chemical Research, 2008, 41(2): 179–189.

    Article  Google Scholar 

  36. Sun X C, Gutierrez A, Jose Yacaman M et al. Investigations on magnetic properties and structure for carbon encapsulated nanoparticles of Fe, Co, Ni [J]. Materials Science and Engineering A, 2000, 286(1): 157–160.

    Article  Google Scholar 

  37. Sun G L, Li X J, Wang Q Q et al. Synthesis of carboncoated iron nanoparticles by detonation technique [J]. Materials Research Bulletin, 2010, 45(5): 519–522.

    Article  Google Scholar 

  38. Uo M, Tamura K, Sato Y et al. The cytotoxicity of metalencapsulating carbon nanocapsules[J]. Small, 2005, 1(8/9): 816–819.

    Article  Google Scholar 

  39. Taylor A, Krupskaya Y, Costa S et al. Functionalization of carbon encapsulated iron nanoparticles [J]. Journal of Nanoparticle Research, 2010, 12(2): 513–519.

    Article  Google Scholar 

  40. Francüois M, Mélanie B, Souad A M et al. Electrode surface confinement of self-assembled enzyme aggregates using magnetic nanoparticles and its application in bioelectrocatalysis [J]. Analytical Chemistry, 2007, 79(1): 187–194.

    Article  Google Scholar 

  41. Elliott B R, Host J J, Dravid V P. A descriptive model linking possible formation mechanisms for graphiteencapsulated nanocrystals to processing parameters [J]. Journal of Materials Research, 1997, 12(12): 3328–3334.

    Article  Google Scholar 

  42. Gamaly E G, Ebbesen T W. Mechanism of carbon nanotube formation in the arc discharge [J]. Physical Review B: Condensed Matter and Materials Physics, 1995, 52(3): 2083–2089.

    Article  Google Scholar 

  43. Guan L, Cui L, Lin K et al. Preparation of few-layer nitrogen-doped graphene nanosheets by DC arc discharge under nitrogen atmosphere of high temperature [J]. Applied Physics A: Materials Science and Processing, 2011, 102(2): 289–294.

    Article  Google Scholar 

  44. Hatakeyama R, Jeong G H, Kato T et al. Effects of micro- and macro-plasma-sheath electric fields on carbon nanotube growth in a cross-field radio-frequency discharge [J]. Journal of Applied Physics, 2004, 96(11): 6053–6060.

    Article  Google Scholar 

  45. Ohno M, Yoh K. Micromagnetic simulation of magnetization reversal process and stray field behavior in Fe thin film wire [J]. Journal of Applied Physics, 2007, 102(12):123908.

    Article  Google Scholar 

  46. House J E. Inorganic Chemistry[M]. Elsevier, USA, 2008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shen Cui  (崔 屾).

Additional information

Cui Shen, born in 1958, male, Dr, Prof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, S., Zhang, L., Cui, L. et al. Preparation of carbon encapsulated iron nanoparticles with very thin shells by DC arc discharge. Trans. Tianjin Univ. 21, 11–18 (2015). https://doi.org/10.1007/s12209-015-2375-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12209-015-2375-2

Keywords

Navigation