Skip to main content
Log in

Performance investigation of 2D lattice Boltzmann simulation of forces on a circular cylinder

  • Published:
Transactions of Tianjin University Aims and scope Submit manuscript

Abstract

The lattice Boltzmann method (LBM) is employed to simulate the uniform flow past a circular cylinder. The performance of the two-dimensional LBM model on the prediction of force coefficients and vortex shedding frequency is investigated. The local grid refinement technique and second-order boundary condition for curved walls are applied in the calculations. It is found that the calculated vortex shedding frequency, drag coefficient and lift coefficient are consistent with experimental results at Reynolds numbers lower than 300. For the high Reynolds number flow, although the simulation by the combined model of LBM and large eddy simulation method is numerically stable, the simulated results deviate from those of experiments, similar to the reported results by conventional numerical methods. It is suggested that this is mainly due to the three-dimensionality of the flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mcnamara G R, Zanetti G. Use of the Boltzmann equation to simulate lattice-gas automata[J]. Physical Review Letters, 1988, 61(20): 2332–2335.

    Article  Google Scholar 

  2. Chen H, Chen S, Matthaeus W H. Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method [J]. Physical Review A, 1992, 45(8): R5339–5342.

    Article  Google Scholar 

  3. Qian Y, D’humieres D, Lallemand P. Lattice BGK models for Navier-Stokes equation[J]. Europhysics Letters, 1992, 17: 479–484.

    Article  MATH  Google Scholar 

  4. Chen S, Doolen G D. Lattice Boltzmann method for fluid flows[J]. Annual Review of Fluid Mechanics, 1998, 30: 329–364.

    Article  MathSciNet  Google Scholar 

  5. He X, Luo L. Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation[J]. Physical Review E, 1997, 56(6): 6811–6817.

    Article  Google Scholar 

  6. Li Y, Shock R, Zhang R et al. Numerical study of flow past an impulsively started cylinder by the lattice-Boltzmann method[J]. Journal of Fluid Mechanics, 2004, 519: 273–300.

    Article  MATH  Google Scholar 

  7. Al-Jahmany Y Y, Brenner G, Brunn P O. Comparative study of lattice-Boltzmann and finite volume methods for the simulation of laminar flow through a 4:1 planar contraction[J]. International Journal for Numerical Methods in Fluids, 2004, 46: 903–920.

    Article  MATH  Google Scholar 

  8. Yoshino M, Matsuda Y, Shao C. Comparison of accuracy and efficiency between the lattice Boltzmann method and the finite difference method in viscous/thermal fluid flows [J]. International Journal of Computational Fluid Dynamics, 2004, 18(4): 333–345.

    Article  MATH  MathSciNet  Google Scholar 

  9. Aidun C K, Clausen J R. Lattice-Boltzmann method for complex flows[J]. Annual Review of Fluid Mechanics, 2010, 42: 439–472.

    Article  MathSciNet  Google Scholar 

  10. Wagner L, Hayot F. Lattice Boltzmann simulations of flow past a cylindrical obstacle[J]. Journal of Statistical Physics, 1995, 81(1/2): 63–70.

    Article  MATH  Google Scholar 

  11. He X, Doolen G D. Lattice Boltzmann method on a curvilinear coordinates system: Vortex shedding behind a circular cylinder[J]. Physical Review E, 1997, 56(1): 434–440.

    Article  Google Scholar 

  12. Cheng Yongguang. Nonuniform mesh grid algorithm for lattice Boltzmann method based on interpolation[J]. Journal of Wuhan University of Hydraulic Electrical Engineering, 2000, 33(5): 26–31 (in Chinese).

    Google Scholar 

  13. Wang Long. Simulation of flow around cylinder with lattice Boltzmann method[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2002, 38(5): 647–652 (in Chinese).

    Google Scholar 

  14. Hou S, Sterling J, Chen S et al. A lattice subgrid model for high Reynolds number flows[J]. Fields Institute Communications, 1996, 6: 151–166.

    MathSciNet  Google Scholar 

  15. Guo Zhaoli, Zheng Chuguang, Liu Zhaohui. Large eddy simulation of flow past a circular cylinder based on lattice Boltzmann method[J]. Journal of Engineering Thermophysics, 2002, 23(4): 479–481 (in Chinese).

    Google Scholar 

  16. Wolf-Gladrow D A. Lattice-gas Cellular Automata and Lattice Boltzmann Models: An Introduction[M]. Springer, Hong Kong, 2000.

    Google Scholar 

  17. Succi S. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond[M]. Oxford University Press, Oxford, 2001.

    Google Scholar 

  18. Filippova O, Hänel D. Grid refinement for lattice-BGK models[J]. Journal of Computational Physics, 1998, 147: 219–228.

    Article  MATH  Google Scholar 

  19. Lin C L, Lai Y G. Lattice Boltzmann method on composite grids[J]. Physical Review E, 2000, 62(2): 2219–2225.

    Article  Google Scholar 

  20. Dupuis A, Chopard B. Theory and applications of an alternative lattice Boltzmann grid refinement algorithm[J]. Physical Review E, 2003, 67: 066707.

    Article  Google Scholar 

  21. Chen H, Filippova O, Hoch J et al. Grid refinement in lattice Boltzmann methods based on volumetric formulation[ J]. Physica A, 2006, 362: 158–167.

    Article  Google Scholar 

  22. He X, Zou Q, Luo L et al. Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model[J]. Journal of Statistical Physics, 1997, 87(1/2): 115–136.

    Article  MATH  MathSciNet  Google Scholar 

  23. Mei R, Luo L, Shyy W. An accurate curved boundary treatment in the lattice Boltzmann method[J]. Journal of Computational Physics, 1999, 155: 307–330.

    Article  MATH  Google Scholar 

  24. Bouzidi M, Firdaouss M, Lallemand P. Momentum transfer of a Boltzmann-lattice fluid with boundaries[J]. Physics of Fluids, 2001, 13(11): 3452–3459.

    Article  Google Scholar 

  25. Guo Z, Zheng C, Shi B. An extrapolation method for boundary conditions in lattice Boltzmann method[J]. Physics of Fluids, 2002, 14(6): 2007–2010.

    Article  Google Scholar 

  26. Ladd A J C. Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation[J]. Journal of Fluid Mechanics, 1994, 271: 285–309.

    MATH  MathSciNet  Google Scholar 

  27. Jordan S K, Fromm J E. Oscillatory drag, lift and torque on a circular cylinder in a uniform flow[J]. The Physics of Fluids, 1972, 15(3): 371–376.

    Article  MATH  Google Scholar 

  28. Braza M, Chassaing P, Haminh H. Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder[J]. Journal of Fluid Mechanics, 1986, 165: 79–130.

    Article  MATH  MathSciNet  Google Scholar 

  29. Henderson R D. Details of the drag curve near the onset of vortex shedding[J]. Physics of Fluids, 1995, 7(9): 2102–2104.

    Article  Google Scholar 

  30. Kravchenko A G, Moin P, Shariff K. B-Spline method and zonal grids for simulations of complex turbulent flows[J]. Journal of Computational Physics, 1999, 151: 757–789.

    Article  MATH  MathSciNet  Google Scholar 

  31. Meneghini J R, Saltara F, Siqueira C L R et al. Numerical simulation of flow interference between two circular cylinders in tandem and side-by-side arrangements[J]. Journal of Fluids and Structures, 2001, 15: 327–350.

    Article  Google Scholar 

  32. Wieselberger C. Neuere feststellungen über die Gesetze des Flüssigkeits- und Luftwiderstandes[J]. Physikalische Zeitschrift, 1921, 22: 321–328.

    Google Scholar 

  33. Tritton D J. Experiments on the flow past a circular cylinder at low Reynolds numbers[J]. Journal of Fluid Mechanics, 1959, 6: 547–567.

    Article  MATH  Google Scholar 

  34. Williamson C H K. Defining a universal and continuous Strouhal-Reynolds number relationship for the laminar vortex shedding of a circular cylinder[J]. The Physics of Fluids, 1988, 31(10): 2742–2744.

    Article  Google Scholar 

  35. Hammache M, Gharib M. A novel method to promote parallel vortex shedding in the wake of circular cylinders [J]. Physics of Fluids A, 1989, 1(10): 1611–1614.

    Article  Google Scholar 

  36. Sheard G J, Hourigan K, Thompson M C. Computations of the drag coefficients for low-Reynolds-number flow past rings[J]. Journal of Fluid Mechanics, 2005, 526: 257–275.

    Article  MATH  Google Scholar 

  37. Rajani B N, Kandasamy A, Majumdar S. Numerical simulation of laminar flow past a circular cylinder[J]. Applied Mathematical Modeling, 2009, 33: 1228–1247.

    Article  MATH  MathSciNet  Google Scholar 

  38. Roshko A. On the Development of Turbulent Wakes from Vortex Streets, Report 1191 [R]. National Advisory Committee for Aeronautics (NACA), 1954.

  39. Lei C, Cheng L, Kavanagh K. A finite difference solution of the shear flow over a circular cylinder[J]. Ocean Engineering, 2000, 27(3): 271–290.

    Article  Google Scholar 

  40. Zhao M, Cheng L, Teng B et al. Numerical simulation of viscous flow past two circular cylinders of different diameters [J]. Applied Ocean Research, 2005, 27: 39–55.

    Article  Google Scholar 

  41. Breuer M. Numerical and modeling influences on large eddy simulations for the flow past a circular cylinder[J]. International Journal of Heat and Fluid Flow, 1998, 19: 512–521.

    Article  Google Scholar 

  42. Beaudan P, Moin P. Numerical Experiments on the Flow Past a Circular Cylinder at Sub-critical Reynolds Number, Report No. TF-62[R]. Department of Mechanical Engineering, Stanford University, 1994.

  43. Kravchenko A G, Moin P. Numerical studies of flow over a circular cylinder at ReD=3 900[J]. Physics of Fluids, 2000, 12(2): 403–417.

    Article  MATH  Google Scholar 

  44. Ong L, Wallace J. The velocity field of the turbulent very near wake of a circular cylinder[J]. Experiments in Fluids, 1996, 20(6): 441–453.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinghe Zhang  (张庆河).

Additional information

Supported by the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20060056036).

CHEN Tongqing, born in 1980, male, doctorate student.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, T., Zhang, Q. & Cheng, L. Performance investigation of 2D lattice Boltzmann simulation of forces on a circular cylinder. Trans. Tianjin Univ. 16, 417–423 (2010). https://doi.org/10.1007/s12209-010-1449-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12209-010-1449-4

Keywords

Navigation