Skip to main content

Advertisement

Log in

Calculation of gas-liquid critical curves for binary systems containing methane

  • Published:
Transactions of Tianjin University Aims and scope Submit manuscript

Abstract

The critical curves for binary systems of methane combined with nitrogen, carbon monoxide, carbon dioxide, ethane, propane, butane and water at temperatures from 125 K to 650 K and pressures from 3.5 MPa to 250 MPa were calculated by using Heilig-Franck equation of state. This equation of state contains a repulsion term and an attraction term for intermolecular interaction. With pairwise combination rules for these potentials, three adjustable parameters are needed. The results showed that the critical curves of the former six binary systems belonged to type I, and CH4+H2O system belonged to type III. The calculated data were compared with the experimental data, which yielded good results for the pressure-temperature, pressure-composition and temperature-composition behaviors of the seven systems. Moreover, the values of the adjustable parameters were obtained from the calculation of the critical curves. They can also be used for other relevant calculation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Johnston K P, Penninger J M. Supercritical Fluid Science and Technology[M]. American Chemical Society, Washington DC, 1989.

    Google Scholar 

  2. Yelash L V, Kraska Th. Supercritical Fluids as Solvents and Reaction Media[M]. Elsevier, Hamburg, 2004. 211–240.

    Google Scholar 

  3. Tian Yiling, Chen Li, Li Mingwei et al. Calculation of gas-liquid critical curves for carbon dioxide: 1-alkanol binary systems[J]. J Phys Chem, 2003, 107: 3076–3080.

    Google Scholar 

  4. Yu Jinglin, Wang Shujun, Tian Yiling et al. Calculation of critical curves for carbon dioxide + n-alkane systems[J]. Trends in Applied Science Research, 2006, 1(4): 317–326.

    Article  MathSciNet  Google Scholar 

  5. Sadus R J. High-Pressure Phase Behavior of Multicomponent Fluid Mixtures[M]. Elsevier, Amsterdam, 1992.

    Google Scholar 

  6. Peng D Y, Robinson D B. A rigorous method for predicting the critical properties of multicomponent system from an equation of state[J]. AIChE J, 1977, 23: 137–144.

    Article  Google Scholar 

  7. Sadus R J, Young C L. Critical properties of ternary mixtures: Hydrocarbon, acetone and alkanenitrile mixtures[J]. Chem Eng Sci, 1987, 42: 1717–1722.

    Article  Google Scholar 

  8. Hicks C P, Young C L. Theoretical prediction of phase behavior at high temperature and pressures for non-polar mixtures[J]. J Chem Soc, Faraday Trans 2, 1977, 73: 597–612.

    Article  Google Scholar 

  9. Heilig M, Franck E U. Phase equilibriums and PVT data for the methane-methanol system to 300 MPa[J]. J Phys Chem, 1989, 93: 898–905.

    Google Scholar 

  10. Ya Songwei, Richard J, Sadus E et al. Binary mixtures of water + five noble gases: Comparison of bimodal and critical curves at high pressures[J]. Fluid Phase Equilibria, 1996, 123: 1–15.

    Article  Google Scholar 

  11. Hirschfelder J O, Curtiss C F, Bird R B. Molecular Theory of Gases and Liquids[M]. John Wiley and Sons, New York, 1964.

    Google Scholar 

  12. Chang S D, Lu B C Y. Proceedings of the International Symposium on Distillation[C]. Brighton, England, 1969. 25–34.

  13. Cines M R, Roach J T, Hogan R J et al. Nitrogen-methane vapor-liquid equilibria[J]. J Chem Eng Progr, Symp Ser, 1953, 49(6): 1–10.

    Google Scholar 

  14. Bloomer O T, Parent. Liquid-vapor phase behavior of the methane-nitrogen system[J]. J Chem Eng Progr, Symp Ser, 1953, 49(3): 23–28.

    Google Scholar 

  15. Toyama A, Chappelear P S, Leland T et al. Modified Redlich-Kwong equation of state for phase equilibrium calculations[J]. Advan Cryog Eng, 1961, 7: 125.

    Google Scholar 

  16. Donnelly H G, Katz D L. Phase equilibria in the carbon dioxide-methane system[J]. Ind Eng Chem, 1954, 46: 511–517.

    Article  Google Scholar 

  17. Kaminishi G, Toriumi T. Vapor-liquid equilibria in the systems: CO2-CO, CO2-CO-H2 and CO2-CH4: The cooperative researches on the fundamental studies of the liquid phase reactions at high pressures[J]. Rev Phys Chem Jap, 1968, 38: 79–84.

    Google Scholar 

  18. Stephen C M, Hwang S C, Kobayashi R. Vapor-liquid equilibrium of the methane-carbon dioxide system at low temperatures[J]. J Chem Eng Data, 1978, 23: 135–135.

    Article  Google Scholar 

  19. Bloomer O T, Gami D C, Parent J D. Heterogeneous equilibria and phase diagrams[J]. Inst Gas Tech Res Bull, 1956, 7: 21–42.

    Google Scholar 

  20. Price A R, Kobayashi R. Low temperature vapor-liquid equilibrium in light hydrocarbon mixtures: Methane-ethane-propane system[J]. J Chem Eng Data, 1959, 4: 40–52.

    Article  Google Scholar 

  21. Wichterle I, Kobayashi R. Vapor-liquid equilibrium of methane-ethane system at low temperatures and high pressures[J]. J Chem Eng Data, 1972, 17: 9–12.

    Article  Google Scholar 

  22. Reamer H H, Sage B H, Lacey W N. Phase equilibria in hydrocarbon systems: Volumetric and phase behavior of the methane-propane system[J]. Ind Eng Chem, 1950, 42: 534–539.

    Article  Google Scholar 

  23. Akers W W, Burns J F, Fairchild W R. Low-temperature phase equilibria: Methane-propane system[J]. Ind Eng Chem, 1954, 46: 2531–2534.

    Article  Google Scholar 

  24. Sage B H, Lacey W N, Schaafsma J G. Phase equilibria in hydrocarbon systems(II): Methane-propane system[J]. Ind Eng Chem, 1934, 26: 214–217.

    Article  Google Scholar 

  25. Roof J G, Baron J D. Critical loci of binary mixtures of propane with methane, carbon dioxide and nitrogen[J]. J Chem Eng Data, 1967, 12: 292–293.

    Article  Google Scholar 

  26. Wichterle I, Kobayashi R. Vapor-liquid equilibrium of methane-propane system at low temperatures and high pressures[J]. J Chem Eng Data, 1972, 17: 4–9.

    Article  Google Scholar 

  27. Jones I W, Rowlinson J S. Gas-liquid critical temperatures of binary mixtures(Part 2)[J]. Trans Faraday Soc, 1963, 59: 1702–1708.

    Article  Google Scholar 

  28. Reamer H H, Sage B H, Lacey W N. Phase equilibria in hydrocarbon systems: Volumetric and phase behavior of the methane-hydrogen sulfide system[J]. Ind Eng Chem, 1951, 43: 976–981.

    Article  Google Scholar 

  29. Roberts L R, Wang R H, Azarnoosh A et al. Methane-n-butane system in the two-phase region[J]. J Chem Eng Data, 1962, 7: 484–485.

    Article  Google Scholar 

  30. Vladimir M Shmonov, Richard J et al. High-pressure phase equilibria and supercritical pVT data of the binary water + methane mixture to 723 K and 200 MPa[J]. J Phys Chem, 1993, 97: 9054–9059.

    Article  Google Scholar 

  31. Brunner E. Fluid mixtures at high pressures(IX): Phase separation and critical phenomena in 23 (n-alkane + water) mixtures[J]. J Chem Thermodyn, 1990, 22: 335–353.

    Article  Google Scholar 

  32. Sage B H, Hicks B L, Lacey W N. Phase equilibria in hydrocarbon systems[J]. Ind Eng Chem, 1940, 32: 1085–1092.

    Article  Google Scholar 

  33. Kohn J P, Kurata F. A correlation of vaporization equilibrium ratios for gas processing systems[J]. Amer Inst Chem Eng J, 1958, 4: 211–216.

    Google Scholar 

  34. van Konynenburg P H, Scott R L P. Critical lines and phase equilibria in binary van der Waals mixtures[J]. Philos Trans R Soc London, 1980, 298(1442): 495–540.

    Article  Google Scholar 

  35. Tian Yiling, Michelberger Th, Franck E U. High-pressure phase equilibria and critical curves of (water + n-butane) and (water + n-hexane) at temperatures to 700 K and pressures to 300 MPa[J]. The Journal of Chemical Thermodynamics, 1991, 23: 105–112.

    Article  Google Scholar 

  36. Wozny G, Cremer H. Phase equilibria of strong electrolytes in aqueous solutions from total pressure measurements[ J]. Fluid Phase Equilibria, 1981, 6: 149–168.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiling Tian  (田宜灵).

Additional information

Supported by National Natural Science Foundation of China (No. 20476071).

ZHU Rongjiao, born in 1982, female, Dr, lecture.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, R., Li, H., Hao, J. et al. Calculation of gas-liquid critical curves for binary systems containing methane. Trans. Tianjin Univ. 15, 276–282 (2009). https://doi.org/10.1007/s12209-009-0049-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12209-009-0049-7

Keywords

Navigation