Skip to main content
Log in

Review of the Evidence Supporting the Medical and Legal Use of NeuroQuant® in Patients with Traumatic Brain Injury

  • Published:
Psychological Injury and Law Aims and scope Submit manuscript

Abstract

Decades of research have shown that the brain atrophies after traumatic brain injury (TBI). However, multiple practical issues made it difficult to detect brain atrophy in individual patients with mild to moderate TBI. This situation improved by 2007 with the FDA approval of NeuroQuant®, a commercially available, computer-automated software program for measuring MRI brain volume in human subjects. Several peer-reviewed scientific studies have supported the reliability and validity of NeuroQuant®. This review addresses whether NeuroQuant® meets the Daubert standard for admissibility in court cases involving persons with TBI. The review finds that NeuroQuant® is an objective, reliable, and practical means of measuring brain volume and therefore can be an important tool for measuring the effects of TBI on brain volume in clinical or medicolegal settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Bigler, E. D. (2005). Structural imaging. In J. M. Silver, T. W. McAllister & S. C. Yudofsky (Eds.), Textbook of traumatic brain injury (pp. 79–105). Washington: American Psychiatric Publishing, Inc.

    Google Scholar 

  • Bigler, E. D. (2011). Structural imaging. In J. M. Silver, T. W. McAllister & S. C. Yudofsky (Eds.), Textbook of traumatic brain injury (pp. 73–90). Washington: American Psychiatric Publishing, Inc.

    Google Scholar 

  • Bigler, E. D., T. J. Abildskov, E. A. Wilde, S. R. McCauley, X. Li, T. L. Merkley, … H. S. Levin (2010). Diffuse damage in pediatric traumatic brain injury: A comparison of automated versus operator-controlled quantification methods. Neuroimage, 50, 1017–1026.

    Google Scholar 

  • Birk, S. (2009). Hippocampal atrophy: Biomarker for early AD?: Hippocampal volume in patients with AD is typically two standard deviations below normal. http://www.internalmedicinenews.com/index.php?id=2049&type=98&tx_ttnews%5Btt_news%5D=10034&cHash=da03e20e36 Accessed 25 February 2012

  • Brewer, J. B. (2009). Fully-automated volumetric MRI with normative ranges: Translation to clinical practice. Behavioural Neurology, 21, 21–28.

    PubMed  Google Scholar 

  • Brewer, J. B., Magda, S., Airriess, C. & Smith, M. E. (2009). Fully-automated quantification of regional brain volumes for improved detection of focal atrophy in Alzheimer disease. American Journal of Neuroradiology, 30, 578–580.

    Article  PubMed  Google Scholar 

  • Ding, K., C. Marquez de la Plata, J. Y. Wang, M. Mumphrey, C. Moore, C. Harper, … R. Diaz_Arrastia (2008). Cerebral atrophy after traumatic white matter injury: Correlation with acute neuroimaging and outcome. Journal of Neurotrauma, 25, 1433–1440.

    Google Scholar 

  • Fischl, B. (2011). [Freesurfer] general info about FS. https://mail.nmr.mgh.harvard.edu/pipermail//freesurfer/2011-March/017501.html Accessed 25 February 2012

  • Gronenschild, E. H., Habets, P., Jacobs, H. I., Mengelers, R., Rozendaal, N., van Os, J. & Marcelis, M. (2012). The effects of FreeSurfer version, workstation type, and Macintosh operating system version on anatomical volume and cortical thickness measurements. PloS One, 7, e38234.

    Article  PubMed  Google Scholar 

  • Heister, D., Brewer, J. B., Magda, S., Blennow, K. & McEvoy, L. K. (2011). Predicting MCI outcome with clinically available MRI and CSF biomarkers. Neurology, 77, 1619–1628.

    Article  PubMed  Google Scholar 

  • Hudak, A., Warner, M., Marquez de la Plata, C., Moore, C., Harper, C. & Diaz Arrastia, R. (2011). Brain morphometry changes and depressive symptoms after traumatic brain injury. Psychiatry Research, 191, 160–165.

    Article  PubMed  Google Scholar 

  • Jack Jr, C. R., M. A. Bernstein, N. C. Fox, P. Thompson, G. Alexander, D. Harvey, … M. W. Weiner (2008). The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. Journal Magnetic Resonance Imaging, 27, 685–691.

  • Jovicich, J., S. Czanner, X. Han, D. Salat, A. v. d. Kouwe, B. Quinn, … B. Fischl (2009). MRI-derived measurements of human subcortical, ventricular and intracranial brain volumes: Reliability effects of scan sessions, acquisition sequences, data analyses, scanner upgrade, scanner vendors and field strengths. Neuroimage, 46, 177–192.

    Google Scholar 

  • Kovacevic, S., Rafii, M. S. & Brewer, J. B. (2009). High-throughput, fully automated volumetry for prediction of MMSE and CDR decline in mild cognitive impairment. Alzheimer Disease and Associated Disorders, 23, 139–145.

    Article  PubMed  Google Scholar 

  • McCauley, S. R., E. A. Wilde, T. L. Merkley, K. P. Schnelle, E. D. Bigler, J. V. Hunter, … H. S. Levin (2010). Patterns of cortical thinning in relation to event-based prospective memory performance 3 months after moderate to severe traumatic brain injury in children. Developmental Neuropsychology, 35, 318–332.

    Google Scholar 

  • McEvoy, L. K. & Brewer, J. B. (2010). Quantitative structural MRI for early detection of Alzheimer’s disease. Expert Review of Neurotherapeutics, 10, 1675–1688.

    Article  PubMed  Google Scholar 

  • McEvoy, L. K., Holland, D., Hagler, D. J., Jr., Fennema Notestine, C., Brewer, J. B. & Dale, A. M. (2011). Mild cognitive impairment: Baseline and longitudinal structural MR imaging measures improve predictive prognosis. Radiology, 259, 834–843.

    Article  PubMed  Google Scholar 

  • Menon, D. K., Schwab, K., Wright, D. W. & Maas, A. I. (2010). Position statement: Definition of traumatic brain injury. Archives of Physical Medicine and Rehabilitation, 91, 1637–1640.

    Article  PubMed  Google Scholar 

  • Merkley, T. L., Bigler, E. D., Wilde, E. A., McCauley, S. R., Hunter, J. V. & Levin, H. S. (2008). Diffuse changes in cortical thickness in pediatric moderate-to-severe traumatic brain injury. Journal of Neurotrauma, 25, 1343–1345.

    Article  PubMed  Google Scholar 

  • Ross, D. E. (2011). Review of longitudinal studies of MRI brain volumetry in patients with traumatic brain injury. Brain Injury, 25, 1271–1278.

    Article  PubMed  Google Scholar 

  • Ross, D. E., Ochs, A. L., Seabaugh, J. & Henshaw, T. (2012a). NeuroQuant® revealed hippocampal atrophy in a patient with traumatic brain injury. The Journal of Neuropsychiatry and Clinical Neurosciences, 24, E33.

    Article  PubMed  Google Scholar 

  • Ross, D. E., Ochs, A. L., Seabaugh, J. M., DeMark, M. F., Shrader, C. R., Marwitz, J. H. & Havranek, M. D. (2012b). Progressive brain atrophy in patients with chronic neuropsychiatric symptoms after mild traumatic brain injury: A preliminary study. Brain Injury, 26(12), 1500–1509.

    Article  PubMed  Google Scholar 

  • Ross, D. E., A. L. Ochs, J. M. Seabaugh & C. R. Shrader (2012). Man vs. Machine: Comparison of radiologists’ interpretations and Neuroquant® volumetric analyses of brain MRIs in patients with traumatic brain injury. Journal of Neuropsychiatry and Clinical Neurosciences. (in press)

  • Simpson, J. R. (Ed.). (2012). Neuroimaging in forensic psychaitry: From the clinic to the courtroom. West Sussex: Wiley-Blackwell.

    Google Scholar 

  • Strangman, G. E., O’Neil Pirozzi, T. M., Supelana, C., Goldstein, R., Katz, D. I. & Glenn, M. B. (2010). Regional brain morphometry predicts memory rehabilitation outcome after traumatic brain injury. Frontiers in Human Neuroscience, 4, 182.

    Article  PubMed  Google Scholar 

  • Warner, M. A., T. S. Youn, T. Davis, A. Chandra, d. l. P. C. Marquez, C. Moore, … R. Diaz-Arrastia (2010). Regionally selective atrophy after traumatic axonal injury. Archives Neurology, 67, 1336–1344.

    Google Scholar 

  • Xu, Y., D. L. McArthur, J. R. Alger, M. Etchepare, D. A. Hovda, T. C. Glenn, … P. M. Vespa (2010). Early nonischemic oxidative metabolic dysfunction leads to chronic brain atrophy in traumatic brain injury. Journal of Cerebral Blood Flow Metabolism, 30, 883–894.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Matthew W. Broughton, Esq., for his helpful comments on this article.

Conflict of Interest

The authors report no financial conflicts of interest or financial relationships with respect to any of the companies or products discussed in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David E. Ross.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ross, D.E., Graham, T.J. & Ochs, A.L. Review of the Evidence Supporting the Medical and Legal Use of NeuroQuant® in Patients with Traumatic Brain Injury. Psychol. Inj. and Law 6, 75–80 (2013). https://doi.org/10.1007/s12207-012-9140-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12207-012-9140-9

Keywords

Navigation