Skip to main content
Log in

Assessment of corrosion resistance and reliability of Cu/diamond composite materials in aquatic environment

  • Original Article
  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

The corrosion resistance of Cu/Diamond composite materials, a combination of copper and diamond, was investigated in aqueous conditions. A 3.5 % NaCl neutral salt spray was employed to assess the corrosion performance of the composite, considering factors such as surface appearance, corrosion rate, and corrosion depth. The results revealed that corrosion predominantly occurred within the copper matrix, while the diamond and interface components remained resistant to corrosion. Micro-galvanic corrosion was identified as the primary corrosion mechanism. Additionally, the incorporation of 5 % diamond particles led to a notable improvement in corrosion resistance, reaching 93.7 %. Although the salt spray environment did induce some changes in the composite surface, it did not significantly impact the overall properties of the composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Denkena, B. Bergmann and R. Lang, Influence of the powder metallurgy route on the mechanical properties of Cu–Cr–diamond composites, SN Appl. Sci., 4 (6) (2022) 161, doi: https://doi.org/10.1007/s42452-022-05048-2.

    Article  Google Scholar 

  2. L. Constantin et al., Additive manufacturing of copper/diamond composites for thermal management applications, Manuf. Lett., 24 (2020) 61–66, doi: https://doi.org/10.1016/j.mfglet.2020.03.014.

    Article  Google Scholar 

  3. Z. Xie, H. Guo, X. Zhang and S. Huang, Corrosion behavior of pressure infiltration diamond/Cu composites in neutral salt spray, Materials (Basel), 13 (8) (2020) 1–11, doi: https://doi.org/10.3390/MA13081847.

    Article  Google Scholar 

  4. W. Tian, L. Liu, F. Meng, Y. Liu, Y. Li and F. Wang, The failure behaviour of an epoxy glass flake coating/steel system under marine alternating hydrostatic pressure, Corros. Sci., 86 (2014) 81–92, doi: https://doi.org/10.1016/j.corsci.2014.04.038.

    Article  Google Scholar 

  5. S. M. Milić, M. M. Antonijević, S. M. Šerbula and G. D. Bogdanović, Influence of benzotriazole on corrosion behaviour of CuAlNiSi alloy in alkaline medium, Corros. Eng. Sci. Technol., 43 (1) (2008) 30–37, doi: https://doi.org/10.1179/174327808X286329.

    Article  Google Scholar 

  6. P. Sangaravadivel, G. Rajamurugan and P. Krishnasamy, Significance of Tungsten disulfide on the mechanical and machining characteristics of phosphor bronze metal matrix composite, Adv. Compos. Lett., 29 (2020) 1–13, doi: https://doi.org/10.1177/2633366x20962496.

    Article  Google Scholar 

  7. N. Poulose, P. Selvakumar, J. T. Philip and J. George, Tribological, mechanical and thermal response of diamond micro-particles reinforced copper matrix composites fabricated by powder metallurgy, Mater. Res. Express, 10 (1) (2023) 015003, doi: https://doi.org/10.1088/2053-1591/acb1a0.

    Article  Google Scholar 

  8. X. Li, S. Yan, X. Chen, Q. Hong and N. Wang, Microstructure and mechanical properties of graphene-reinforced copper matrix composites prepared by in-situ CVD, ball-milling, and spark plasma sintering, J. Alloys Compd., 834 (2020) 155182, doi: https://doi.org/10.1016/j.jallcom.2020.155182.

    Article  Google Scholar 

  9. O. Papadopoulou and P. Vassiliou, The influence of archaeometallurgical copper alloy castings microstructure towards corrosion evolution in various corrosive media, Corros. Mater. Degrad., 2 (2) (2021) 227–247, doi: https://doi.org/10.3390/cmd2020013.

    Article  Google Scholar 

  10. A. Aballe, M. Bethencourt, F. J. Botana, M. J. Cano and M. Marcos, Localized alkaline corrosion of alloy AA5083 in neutral 3.5 % NaCl solution, Corros. Sci., 43 (9) (2001) 1657–1674, doi: https://doi.org/10.1016/S0010-938X(00)00166-9.

    Article  Google Scholar 

  11. E. Martinez-Lombardia, L. Lapeire, I. De Graeve, K. Verbeken, L. A. I. Kestens and H. Terryn, Study of the influence of the microstructure on the corrosion properties of pure copper, Mater. Corros., 67 (8) (2016) 847–856, doi: https://doi.org/10.1002/maco.201508719.

    Article  Google Scholar 

  12. E. McCafferty, Validation of corrosion rates measured by the Tafel extrapolation method, Corros. Sci., 47 (12) (2005) 3202–3215, doi: https://doi.org/10.1016/j.corsci.2005.05.046.

    Article  Google Scholar 

  13. M. A. Amin and M. M. Ibrahim, Corrosion and corrosion control of mild steel in concentrated H2SO4 solutions by a newly synthesized glycine derivative, Corros. Sci., 53 (3) (2011) 873–885, doi: https://doi.org/10.1016/j.corsci.2010.10.022.

    Article  Google Scholar 

  14. H. Rezagholi, M. Mirjani, M. Abdi and S. Borji, Properties of copper/nano-diamond composites upon pre/post heat treatment, Mater. Res. Express, 6 (2019) 125007, doi: https://doi.org/10.1088/2053-1591/ab547e.

    Article  Google Scholar 

  15. O. Sanni and A. P. I. Popoola, Data on environmental sustainable corrosion inhibitor for stainless steel in aggressive environment, Data Br., 22 (2019) 451–457, doi: https://doi.org/10.1016/j.dib.2018.11.134.

    Article  Google Scholar 

  16. A. Jamwal, P. P. Seth, D. Kumar, R. Agrawal, K. K. Sadasivuni and P. Gupta, Microstructural, tribological and compression behaviour of copper matrix reinforced with Graphite-SiC hybrid composites, Mater. Chem. Phys., 251 (2020) 123090, doi: https://doi.org/10.1016/j.matchemphys.2020.123090.

    Article  Google Scholar 

  17. N. Kumar, A. Bharti, M. Dixit and A. Nigam, Effect of powder metallurgy process and its parameters on the mechanical and electrical properties of copper-based materials: literature review, Powder Metall. Met. Ceram., 59 (7–8) (2020) 401–410, doi: https://doi.org/10.1007/s11106-020-00174-1.

    Article  Google Scholar 

  18. W. B. Johnson and B. Sonuparlak, Diamond/Al metal matrix composites formed by the pressureless metal infiltration process, J. Mater. Res., 8 (5) (1993) 1169–1173, doi: https://doi.org/10.1557/JMR.1993.1169.

    Article  Google Scholar 

  19. G. Wu, L. Sun, W. Dai, L. Song and A. Wang, Influence of interlayers on corrosion resistance of diamond-like carbon coating on magnesium alloy, Surf. Coatings Technol., 204 (14) (2010) 2193–2196, doi: https://doi.org/10.1016/j.surfcoat.2009.12.009.

    Article  Google Scholar 

  20. T. Q. Tran et al., 3D printing of highly pure copper, Metals (Basel), 9 (7) (2019) 12–20, doi: https://doi.org/10.3390/met9070756.

    Article  Google Scholar 

  21. Z. A. Hamid, M. H. Gomaa and H. B. Hassan, Corrosion performance of copper-diamond composites in different aqueous solutions, Am. J. Electromagn. Appl., 4 (2) (2016) 39–49, doi: https://doi.org/10.11648/j.ajea.20160402.15.

    Google Scholar 

  22. J. H. Liu et al., Impact of annealing temperature on the microstructure, microhardness, tribological properties and corrosion resistance of Ni-Mo/diamond composites, Appl. Surf. Sci., 541 (2021) 148367, doi: https://doi.org/10.1016/j.apsusc.2020.148367.

    Article  Google Scholar 

  23. J. H. Liu, Z. L. Pei, W. B. Shi, Y. D. Liu, J. Gong and C. Sun, Studies on preparation, microstructure, mechanical properties and corrosion resistance of Ni-Mo/micron-sized diamond composite coatings, Surf. Coatings Technol., 385 (2019) (2020) 125451, doi: https://doi.org/10.1016/j.surfcoat.2020.125451.

    Article  Google Scholar 

  24. X. Zhang, M. Xu, S. Cao, W. Chen, W. Yang and Q. Yang, Enhanced thermal conductivity of diamond/copper composite fabricated through doping with rare-earth oxide Sc2O3, Diam. Relat. Mater., 104 (2019) (2020) 107755, doi: https://doi.org/10.1016/j.diamond.2020.107755.

    Article  Google Scholar 

  25. S. S. Bujari and D. R. V. Kurahatti, A review on processing and tribological properties of metal matrix composites, IJAETMAS, 3 (1) (2016) 302–310.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Selvakumar.

Additional information

Nixon Poulose is a research scholar in the Department of Mechanical Engineering, PSN College of Engineering and Technology, Tirunelveli. His research interests include Tribology, composite materials and optimization.

P. Selvakumar is a Professor in the Department of Mechanical Engineering, PSN College of Engineering and Technology, Tirunelveli. He received his Ph.D. in Nano fluid Heat transfer from National Institute of Technology, Tiruchirappalli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poulose, N., Selvakumar, P. Assessment of corrosion resistance and reliability of Cu/diamond composite materials in aquatic environment. J Mech Sci Technol 38, 2439–2446 (2024). https://doi.org/10.1007/s12206-024-0422-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-024-0422-4

Keywords

Navigation