Skip to main content
Log in

Effect of welding path on the weld quality of aluminum tab and steel battery case in lithium-ion battery

  • Original Article
  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

The choice of welding path in joining battery connections plays a crucial role in the bonding strength, which in turn affects battery performance. A commonly employed welding path in laser welding is the circular wobbling path. Our prior study revealed that the hatching path in laser welding, which is hardly reported in the literature, offers a flexible welding pattern and sufficient weld strength, especially for thin specimens. This study conducted a comparative analysis of circular and hatch welding paths concerning their microstructure, mechanical properties, and electrical characteristics. Upon observing the surfaces of the two types of welds, it becomes evident that the hatch welding path results in a superior weld appearance with less spatter formation near the welding zone in comparison to the circular path. Furthermore, an examination of the cross-sections reveals a significant disparity in the interdiffusion between the welding materials. While the circular path yields a non-uniform chemical diffusion of the case material within the welded tab, the hatching path exhibits a periodic upward penetration of the case material into the tab at the welding lines. This discrepancy leads to a distinctive distribution of hardness, electrical resistance, and mechanical strength in the welds, with the desired properties attributed to the hatch welding path. Through this comparative analysis, the study unveils the influence of the laser beam deflection path on the overall weld quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Megahed and W. Ebner, Lithium-ion battery for electronic applications, J. Power Sources, 54(1) (1995) 155–162, doi: https://doi.org/10.1016/0378-7753(94)02059-C.

    Article  Google Scholar 

  2. N. Nitta, F. Wu, J. T. Lee and G. Yushin, Li-ion battery materials: Present and future, Mater. Today, 18(5) (2015) 252–264, doi: https://doi.org/10.1016/j.mattod.2014.10.040.

    Article  Google Scholar 

  3. T. Chen et al., Applications of lithium-ion batteries in grid-scale energy storage systems, Trans. Tianjin Univ., 26(3) (2020) 208–217, doi: https://doi.org/10.1007/s12209-020-00236-w.

    Article  Google Scholar 

  4. R. Ravi, Importance of Lithium Ion Battery in BMS of Electric Vehicles, ResearchGate (2020) doi: https://doi.org/10.13140/RG.2.2.20898.66241.

  5. A. Yoshino, Development of the Lithium-Ion Battery and Recent Technological Trends, Elsevier, Netherlands (2014) doi: https://doi.org/10.1016/B978-0-444-59513-3.00001-7.

  6. T. Fujita and K. Toda, Microdisplacement measurement using a liquid-delay-line oscillator, Japanese J. Appl. Physics, Part 1 Regul. Pap. Short Notes Rev. Pap., 42(9) (2003) 6131–6134, doi: https://doi.org/10.1143/jjap.42.6131.

    Article  Google Scholar 

  7. J. B. Goodenough and K. Mizushima, Fast ION Conductors, United States Patent (1982) https://patents.google.com/patent/US4357215A/en.

  8. R. Yazami and P. Touzain, A reversible graphite-lithium negative electrode for electrochemical generators, J. Power Sources, 9(3) (1983) 365–371, doi: https://doi.org/10.1016/0378-7753(83)87040-2.

    Article  Google Scholar 

  9. L. N. Trinh and D. Lee, The effect of using a metal tube on laser welding of the battery case and the tab for lithium-ion battery, Materials (Basel), 13(19) (2020) 4460, doi: https://doi.org/10.3390/ma13194460.

    Article  Google Scholar 

  10. D. Lee, R. Patwa, H. Herfurth and J. Mazumder, High speed remote laser cutting of electrodes for lithium-ion batteries: anode, J. Power Sources, 240 (2013) 368–380, doi: https://doi.org/10.1016/j.jpowsour.2012.10.096.

    Article  Google Scholar 

  11. D. Lee, B. Oh and J. Suk, The effect of compactness on laser cutting of cathode for lithium-ion batteries using continuous fiber laser, Appl. Sci., 9(1) (2019) 205, doi: https://doi.org/10.3390/app9010205.

    Article  Google Scholar 

  12. D. Lee, R. Patwa, H. Herfurth and J. Mazumder, Computational and experimental studies of laser cutting of the current collectors for lithium-ion batteries, J. Power Sources, 210 (2012) 327–338, doi: https://doi.org/10.1016/j.jpowsour.2012.03.030.

    Article  Google Scholar 

  13. J. Godek, Joining lithium–ion batteries into packs using small-scale resistance spot welding, Weld. Int., 27(8) (2013) 616–622, doi: https://doi.org/10.1080/09507116.2011.606148.

    Article  Google Scholar 

  14. D. Lee and S. Ahn, Investigation of laser cutting width of Li-CoO2 coated aluminum for lithium-ion batteries, Appl. Sci., 7(9) (2017) 914, doi: https://doi.org/10.3390/app7090914.

    Article  Google Scholar 

  15. A. Das, D. Li, D. Williams and D. Greenwood, Weldability and shear strength feasibility study for automotive electric vehicle battery tab interconnects, J. Brazilian Soc. Mech. Sci. Eng., 41(1) (2019) 1–14, doi: https://doi.org/10.1007/s40430-018-1542-5.

    Article  Google Scholar 

  16. Y. T. You and J. W. Kim, Fiber laser welding properties of copper materials for secondary batteries, Medziagotyra, 23(4) (2017) 398–403, doi: https://doi.org/10.5755/j01.ms.23.4.16316.

    Google Scholar 

  17. M. F. R. Zwicker, M. Moghadam, W. Zhang and C. V. Nielsen, Automotive battery pack manufacturing–A review of battery to tab joining, J. Adv. Join. Process., 1(2019) (2020) 100017, doi: https://doi.org/10.1016/j.jajp.2020.100017.

    Article  Google Scholar 

  18. Y. Xue, R. Shen, S. Ni, M. Song and D. Xiao, Fabrication, microstructure and mechanical properties of Al-Fe intermetallic particle reinforced Al-based composites, J. Alloys Compd., 618 (2015) 537–544, doi: https://doi.org/10.1016/j.jallcom.2014.09.009.

    Article  Google Scholar 

  19. C. Dharmendra, K. P. Rao, J. Wilden and S. Reich, Study on laser welding-brazing of zinc coated steel to aluminum alloy with a zinc based filler, Mater. Sci. Eng. A, 528(3) (2011) 1497–1503, doi: https://doi.org/10.1016/j.msea.2010.10.050.

    Article  Google Scholar 

  20. A. Mathieu et al., Dissimilar material joining using laser (aluminum to steel using zinc-based filler wire), Opt. Laser Technol., 39(3) (2007) 652–661, doi: https://doi.org/10.1016/j.optlastec.2005.08.014.

    Article  Google Scholar 

  21. M. Pouranvari, Critical assessment: dissimilar resistance spot welding of aluminium/steel: challenges and opportunities, Mater. Sci. Technol. (United Kingdom), 33(15) (2017) 1705–1712, doi: https://doi.org/10.1080/02670836.2017.1334310.

    Article  Google Scholar 

  22. Z. Wan, H. P. Wang, N. Chen, M. Wang and B. E. Carlson, Characterization of intermetallic compound at the interfaces of Al-steel resistance spot welds, J. Mater. Process. Technol., 242 (2017) 12–23, doi: https://doi.org/10.1016/j.jmatprotec.2016.11.017.

    Article  Google Scholar 

  23. J. Kang, H. M. Rao, D. R. Sigler and B. E. Carlson, Tensile and fatigue behaviour of AA6022-T4 to if steel resistance spot welds, Procedia Struct. Integr., 5 (2017) 1425–1432, doi: https://doi.org/10.1016/j.prostr.2017.07.207.

    Article  Google Scholar 

  24. J. Chen, X. Yuan, Z. Hu, T. Li, K. Wu and C. Li, Improvement of resistance-spot-welded joints for DP 600 steel and A5052 aluminum alloy with Zn slice interlayer, J. Manuf. Process., 30 (2017) 396–405, doi: https://doi.org/10.1016/j.jmapro.2017.10.009.

    Article  Google Scholar 

  25. N. Chen, M. Wang, H. P. Wang, Z. Wan and B. E. Carlson, Microstructural and mechanical evolution of Al/steel interface with Fe2Al5 growth in resistance spot welding of aluminum to steel, J. Manuf. Process., 34 (2018) 424–434, doi: https://doi.org/10.1016/j.jmapro.2018.06.024.

    Article  Google Scholar 

  26. P. Podržaj, I. Polajnar, J. Diaci and Z. Kariž, Overview of resistance spot welding control, Sci. Technol. Weld. Join., 13(3) (2008) 215–224, doi: https://doi.org/10.1179/174329308X283893.

    Article  Google Scholar 

  27. P. Prangnell, F. Haddadi and Y. C. Chen, Ultrasonic spot welding of aluminium to steel for automotive applications-microstructure and optimisation, Mater. Sci. Technol., 27(3) (2011) 617–624, doi: https://doi.org/10.1179/026708310X520484.

    Article  Google Scholar 

  28. H. T. Fujii, Y. Goto, Y. S. Sato and H. Kokawa, Microstructure and lap shear strength of the weld interface in ultrasonic welding of Al alloy to stainless steel, Scr. Mater., 116 (2016) 135–138, doi: https://doi.org/10.1016/j.scriptamat.2016.02.004.

    Article  Google Scholar 

  29. F. Haddadi, D. Strong and P. B. Prangnell, Effect of zinc coatings on joint properties and interfacial reactions in aluminum to steel ultrasonic spot welding, JOM, 64(3) (2012) 407–413, doi: https://doi.org/10.1007/s11837-012-0265-9.

    Article  Google Scholar 

  30. M. Shakil, N. H. Tariq, M. Ahmad, M. A. Choudhary, J. I. Akhter and S. S. Babu, Effect of ultrasonic welding parameters on microstructure and mechanical properties of dissimilar joints, Mater. Des., 55 (2014) 263–273, doi: https://doi.org/10.1016/j.matdes.2013.09.074.

    Article  Google Scholar 

  31. J. Mazumder, Laser heat treatment: the state of the art, JOM, 35(5) (1983) 18–26, doi: https://doi.org/10.1007/BF03338273.

    Article  Google Scholar 

  32. R. E. Wagner, Laser drilling mechanics, J. Appl. Phys., 45(10) (1974) 4631–4637, doi: https://doi.org/10.1063/1.1663102.

    Article  Google Scholar 

  33. A. Mahrle and E. Beyer, Theoretical aspects of fibre laser cutting, J. Phys. D. Appl. Phys., 42 (17) (2009) doi: https://doi.org/10.1088/0022-3727/42/17/175507.

  34. D. Y. You, X. D. Gao and S. Katayama, Review of laser welding monitoring, Sci. Technol. Weld. Join., 19(3) (2014) 181–201, doi: https://doi.org/10.1179/1362171813Y.0000000180.

    Article  Google Scholar 

  35. S. S. Lee, T. H. Kim, S. J. Hu, W. W. Cai and J. A. Abell, Joining technologies for automotive lithium-ion battery manufacturing - A review, ASME 2010 Int. Manuf. Sci. Eng. Conf. MSEC 2010, 1 (2010) 541–549, doi: https://doi.org/10.1115/MSEC2010-34168.

    Google Scholar 

  36. L. H. Shah, F. Khodabakhshi and A. Gerlich, Effect of beam wobbling on laser welding of aluminum and magnesium alloy with nickel interlayer, J. Manuf. Process., 37(2018) (2019) 212–219, doi: https://doi.org/10.1016/j.jmapro.2018.11.028.

    Article  Google Scholar 

  37. S. V. Kuryntsev and A. K. Gilmutdinov, The effect of laser beam wobbling mode in welding process for structural steels, Int. J. Adv. Manuf. Technol., 81(9–12) (2015) 1683–1691, doi: https://doi.org/10.1007/s00170-015-7312-y.

    Article  Google Scholar 

  38. L. Wang, M. Gao, C. Zhang and X. Zeng, Effect of beam oscillating pattern on weld characterization of laser welding of AA6061-T6 aluminum alloy, Mater. Des., 108 (2016) 707–717, doi: https://doi.org/10.1016/j.matdes.2016.07.053.

    Article  Google Scholar 

  39. C. L. Druzgalski, A. Ashby, G. Guss, W. E. King, T. T. Roehling and M. J. Matthews, Process optimization of complex geometries using feed forward control for laser powder bed fusion additive manufacturing, Addit. Manuf., 34 (2020) 101169, doi: https://doi.org/10.1016/j.addma.2020.101169.

    Google Scholar 

  40. L. Li and S. Anand, Hatch pattern based inherent strain prediction using neural networks for powder bed fusion additive manufacturing, J. Manuf. Process., 56 (2020) 1344–1352, doi: https://doi.org/10.1016/j.jmapro.2020.04.030.

    Article  Google Scholar 

  41. N. Nadammal et al., Effect of hatch length on the development of microstructure, texture and residual stresses in selective laser melted superalloy Inconel 718, Mater. Des., 134 (2017) 139–150, doi: https://doi.org/10.1016/j.matdes.2017.08.049.

    Article  Google Scholar 

  42. L. N. Trinh and D. Lee, The characteristics of laser welding of a thin aluminum tab and steel battery case for lithium-ion battery, Metals, 10(6) (2020) 842, doi: https://doi.org/10.3390/met10060842.

    Article  Google Scholar 

  43. A. Mazzoli and O. Favoni, Particle size, size distribution and morphological evaluation of airborne dust particles of diverse woods by scanning electron microscopy and image processing program, Powder Technol., 225 (2012) 65–71, doi: https://doi.org/10.1016/j.powtec.2012.03.033.

    Article  Google Scholar 

  44. A. F. H. Kaplan and J. Powell, Spatter in laser welding, J. Laser Appl., 23(3) (2011) 032005, doi: https://doi.org/10.2351/1.3597830.

    Article  Google Scholar 

  45. L. N. Trinh and D. Lee, Welding of thin tab and battery case for lithium-ion battery cylindrical cell using nanosecond pulsed fiber laser, Journal of Welding and Joining, 38(4) (2020) 389–394, doi: https://doi.org/10.5781/jwj.2020.38.4.8.

    Article  Google Scholar 

  46. B. Bagheri, M. Abbasi, F. Sharifi and A. Abdollahzadeh, Investigation into novel multipass friction stir vibration brazing of carbon steels, Mater. Manuf. Process., 37(8) (2022) 921–932, doi: https://doi.org/10.1080/10426914.2021.2006220.

    Article  Google Scholar 

  47. A. H. Vaneghi, B. Bagheri, A. Shamsipur, S. E. Mirsalehi and A. Abdollahzadeh, Investigations into the formation of intermetallic compounds during pinless friction stir spot welding of AA2024-Zn-pure copper dissimilar joints, Weld. World, 66(11) (2022) 2351–2369, doi: https://doi.org/10.1007/S40194-022-01366-6/FIGURES/12.

    Article  Google Scholar 

  48. A. Abdollahzadeh, B. Bagheri, A. H. Vaneghi, A. Shamsipur and S. E. Mirsalehi, Advances in simulation and experimental study on intermetallic formation and thermomechanical evolution of Al-Cu composite with Zn interlayer: effect of spot pass and shoulder diameter during the pinless friction stir spot welding process, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 237(6) (2022) 1475–1494, doi: https://doi.org/10.1177/14644207221146981.

    Article  Google Scholar 

  49. X. Ao, H. Xia, J. Liu and Q. He, Simulations of microstructure coupling with moving molten pool by selective laser melting using a cellular automaton, Mater. Des., 185 (2020) 108230, doi: https://doi.org/10.1016/J.MATDES.2019.108230.

    Article  Google Scholar 

  50. J. Janesch, Two-wire vs. Four-wire Resistance Measurements: Which Configuration Makes Sense for Your Application?, Keithley, USA (2013) 2–4.

Download references

Acknowledgments

The research described herein was supported by the National Research Foundation of Korea (NRF) (No. RS-2023-00208039) and by the Innopolis Foundation of Korea (No. 2023-SB-SB-0079) funded by the Ministry of Science and ICT (MSIT, Korea). This research was also supported by the Regional Innovation Strategy (RIS) (2021RIS-004) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE, Korea). In addition, this work was supported by the Technology Development Program (S3288700, S3275266) funded by the Ministry of SMEs and Startups (MSS, Korea), and by the Korea Institute for Advancement of Technology (KIAT) (P0018009) funded by the Ministry of Trade, Industry, and Energy (MOTIE, Korea). The opinions expressed in this paper are those of the authors and do not necessarily reflect the sponsors’ views.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongkyoung Lee.

Additional information

Dongkyoung Lee received his Ph.D. in Mechanical Engineering in 2012 and an M.S. in 2011, both from the University of Michigan, Ann Arbor, MI, U.S.A. He also earned an M.S. in Aerospace Engineering from the same university in 2017, and a B.S. in Mechanical Engineering from Hanyang University, Seoul, South Korea in 2006. Currently, he is an Associate (Tenured) Professor at Kongju National University, South Korea, in the Department of Mechanical and Automotive Engineering, Department of Future Convergence Engineering, and Center for Advanced Materials and Parts of Powder (CAMP2). His research focuses on laser-aided manufacturing, with particular emphasis on applications in lithium-ion batteries, fuel cells, nuclear decommissioning, advanced semiconductor packaging, and display technologies.

Lanh Trinh obtained his M.S. in Engineering from Kongju National University, Cheonan, Korea, in 2021. During his master’s program, his research specialized in laser welding for dissimilar metals in Lithium-ion batteries. Presently, he is pursuing a Ph.D. in Materials Engineering at the University of Nebraska-Lincoln, NE, U.S.A. His current research focuses on advanced manufacturing and fabrication of high entropy materials tailored for extreme environments, encompassing high temperature, corrosion, and irradiation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trinh, L., Lee, D. Effect of welding path on the weld quality of aluminum tab and steel battery case in lithium-ion battery. J Mech Sci Technol 38, 2385–2395 (2024). https://doi.org/10.1007/s12206-024-0417-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-024-0417-1

Keywords

Navigation