Skip to main content
Log in

Nano-magnetothermal effect enhances the glucose oxidase activity of FVIOs-GOD in antibacterial research

  • Original Article
  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

In this study, glucose oxidase (GOD) was fixed on ferrimagnetic vortex-domain iron oxide nanorings (FVIOs) using the covalent bond crosslinking method to create FVIOs-GOD compounds. The activity of surface-conjugated enzymes can be effectively and selectively enhanced by utilizing FVIOs to induce magnetothermal effects under the influence of alternating magnetic fields. GOD can further catalyze the oxidation of glucose to hydrogen peroxide (H2O2), which possesses bactericidal properties. This study presents a comprehensive technique for controlling the activity of enzymes by nano-magnetothermal stimulation, which was utilized in Escherichia coli antibacterial studies. In comparison to the control group, the enzyme activity of the FVIOs-GOD immobilized enzymes rose by 50 % due to the nano-magnetothermal stimulation, and the enzyme activity could be controlled by varying the magnetic field intensity. The antibacterial experiments indicated that the survival rate of Escherichia coli decreased by 55 % after exposure to a magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Saidin, M. A. Jumat, N. A. A. Mohd Amin and A. S. Saleh AI-Hammadi, Organic and inorganic antibacterial approaches in combating bacterial infection for biomedical application, Mater. Sci. Eng: C, 118 (2021) 111382, DOI: https://doi.org/10.1016/j.msec.2020.111382.

    Article  CAS  Google Scholar 

  2. Y. Y. Xie, X. H. Hu, Y. W. Zhang, F. Wahid, L. Q. Chu, S. R. Jia and C. Zhong, Development and antibacterial activities of bacterial cellulose/graphene oxide-CuO nanocomposite films, Carbohyd. Polym., 229 (2020) 115456, DOI: https://doi.org/10.1016/j.carbpol.2019.115456.

    Article  CAS  Google Scholar 

  3. A. V. Singh, P. Laux, A. Luch, C. Sudrik, S. Wiehr, A. M. Wild, G. Santomauro, J. Bill and M. Sitti, Review of emerging concepts in nanotoxicology: opportunities and challenges for safer nanomaterial design, Toxicol. Mech. Method., 29 (2019) 378–387, DOI: https://doi.org/10.1080/15376516.2019.1566425.

    Article  CAS  Google Scholar 

  4. H. Bouwmeester, P. C. H. Hollman and R. J. B. Peters, Potential health impact of environmentally released micro- and nanoplastics in the human food production chain: experiences from nanotoxicology, Environ. Sci. Technol., 49(15) (2015) 8932–8947, DOI: https://doi.org/10.1021/acs.est.5b01090.

    Article  ADS  CAS  PubMed  Google Scholar 

  5. A. V. Singh, R. S. Maharjan, A. Kanase, K. Siewert, D. Rosenkranz, R. Singh, P. Laux and A. Luch, Machine-learning-based approach to decode the influence of nanomaterial properties on their interaction with cells, ACS Appl. Mater. Interfaces, 13(1) (2021) 1943–1955, DOI: https://doi.org/10.1021/acsami.0c18470.

    Article  CAS  PubMed  Google Scholar 

  6. J. F. Darby, M. Atobe, J. D. Firth, P. Bond, G. J. Davies, P. O’Brien and R. E. Hubbard, Increase of enzyme activity through specific covalent modification with fragments, Chem. Sci., 8 (2017) 7772–7779, DOI: https://doi.org/10.1039/C7SC01966A.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. C. Zhang, Z. Zeng, D. Cui, S. S. He, Y. Y. Jiang, J. C. Li, J. G. Huang and K. Y. Pu, Semiconducting polymer nano-PROTACs for activatable photo-immunometabolic cancer therapy, Nat. Commun., 12 (2021) 2934–2946, DOI:https://doi.org/10.1038/s41467-021-23194-w.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. D. W. Jiang, D. L. Ni, Z. T. Rosenkrans, P. Huang, X. Y. Yan and W. B. Cai, Nanozyme: new horizons for responsive biomedical applications, Chem. Soc. Rev., 48 (2019) 3683–3704, DOI: https://doi.org/10.1039/C8CS00718G.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Y. L. Li, B. Wang, M. J. Wu, W. W. Huan and J. Li, Magnetic graphene oxide nanocomposites as an effective support for lactase immobilization with improved stability and enhanced photothermal enzymatic activity, New J. Chem., 45 (2021) 5939–5948, DOI: https://doi.org/10.1039/D0NJ06260J.

    Article  CAS  Google Scholar 

  10. L. D. Knecht, N. Ali, Y. N. Wei, J. Z. Hilt and S. Daunert, Nanoparticle-mediated remote control of enzymatic activity, ACS Nano, 6(10) (2012) 9079–9086, DOI: https://doi.org/10.1021/nn303308v.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. S. Guo, H. Li, J. Liu, Y. M. Yang, W. Q. Kong, S. Qiao, H. Huang, Y. Liu and Z. H. Kang, Visible-light-induced effects of Au nanoparticle on laccase catalytic activity, ACS Appl. Mater. Interfaces, 7 (2015) 20937–20944, DOI: https://doi.org/10.1021/acsami.5b06472.

    Article  CAS  PubMed  Google Scholar 

  12. C. Q. Wang, Q. Zhang, X. Y. Wang, H. Chang, S. J. Zhang, Y. K. Tang, J. H. Xu, R. J. Qi and Y. Y. Cheng, Dynamic modulation of enzyme activity by near- infrared light, Angew. Chem., 129 (2017) 6871–6876, DOI: https://doi.org/10.1002/ange.201700968.

    Article  ADS  Google Scholar 

  13. M. Uygun, B. Jurado-Sanchez and D. A. Uygun, Ultrasound-propelled nanowire motors enhance asparaginase enzymatic activity against cancer cells, Nanoscale, 9 (2017) 18423–18429, DOI: https://doi.org/10.1039/C7NR07396H.

    Article  CAS  PubMed  Google Scholar 

  14. Y. He, X. Y. Chen, Y. Zhang, Y. Y. Wang, M. Y. Cui, G. L. Li, X. L. Liu and H. M. Fan, Magnetoresponsive nanozyme: magnetic stimulation on the nanozyme activity of iron oxide nanoparticles, Sci. China-Life Sci., 65 (2022) 184–192, DOI: https://doi.org/10.1007/s11427-020-1907-6.

    Article  CAS  PubMed  Google Scholar 

  15. Y. Zhang, Y. Y. Wang, Q. Zhou, X. Y. Chen, W. B. Jiao, G. L. Li, M. L. Peng, X. L. Liu, Y. He and H. M. Fan, Precise regulation of enzyme-nanozyme cascade reaction kinetics by magnetic actuation toward efficient tumor therapy, Acs Appl. Mater. Interfaces, 13 (2021) 52395–52405, DOI: https://doi.org/10.1021/acsami.1c15717.

    Article  CAS  PubMed  Google Scholar 

  16. B. Y. Zhang, Y. S. Zhou, C. L. Liu, M. A. A. Mohammed, Z. J. Chen and Z. B. Chen, Immobilized penicillin G acylase with enhanced activity and stability using glutaraldehyde-modified polydopamine-coated Fe3O4 nanoparticles, Biotechnol. Appl. Bioc., 69(2) (2022) 629–641, DOI: https://doi.org/10.1002/bab.2138.

    Article  CAS  Google Scholar 

  17. R. Xiong, W. T. Zhang, Y. F. Zhang, Y. Zhang, Y. M. Chen, Y. He and H. M. Fan, Remote and real time control of an FVIO-enzyme hybrid nanocatalyst using magnetic stimulation, Nanoscale, 11 (2019) 18081–18089, DOI: https://doi.org/10.1039/C9NR04289J.

    Article  CAS  PubMed  Google Scholar 

  18. A. Chiu-Lam and C. Rinaldi, Nanoscale thermal phenomena in the vicinity of magnetic nanoparticles in alternating magnetic fields, Adv. Funct. Mater., 26(22) (2016) 3933–3941, DOI: https://doi.org/10.1002/adfm.201505256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. J. A. Medford, J. W. Hubbard, F. Orange, M. J. F. Guinel, B. O. Calcagno and C. Rinaldi, Magnetothermal repair of a PMMA/iron oxide magnetic nanocomposite, Colloid. Polym. Sci., 292 (2014) 1429–1437, DOI: https://doi.org/10.1007/s00396-014-3194-z.

    Article  CAS  Google Scholar 

  20. Q. Q. Tang, H. Lei, R. Q. Wu, H. M. Fan and Y. Lv, Progress of magnetic hyperthermia based on magnetic nanomaterials, Chin. Sci. Bull., 66(26) (2021) 3462–3473, DOI: https://doi.org/10.1360/TB-2020-1646 (in Chinese).

    Article  Google Scholar 

  21. A. Riedinger, P. Guardia, A. Curcio, M. A. Garcia, R. Cingolani, L. Manna and T. Pellegrino, Subnanometer local temperature probing and remotely controlled drug release based on Azo-functionalized iron oxide nanoparticles, Nano Lett., 13(6) (2013) 2399–2406, DOI: https://doi.org/10.1021/nl400188q.

    Article  ADS  CAS  PubMed  Google Scholar 

  22. G. Romero, M. G. Christiansen, L. S. Barbosa, F. Garcia and P. Anikeeva, Localized excitation of neural activity via rapid magnetothermal drug release, Adv. Funct. Mater., 26(35) (2016) 6471–6478, DOI: https://doi.org/10.1002/adfm.201602189.

    Article  CAS  Google Scholar 

  23. J. P. Wu, X. L. Liu, H. Zhang, Y. F. Zhang, Y. E. Luo and H. M. Fan, Magnetic vortex nanoparticles: An innovative magnetic nanoplatform for biomedical application, Prog. Biochem. Biophys., 42(7) (2015) 593–605, DOI: https://doi.org/10.16476/j.pibb.2014.0352.

    Google Scholar 

  24. C. S. B. Dias, T. D. M. Hanchuk, H. Wender, W. T. Shigeyosi, J. Kobarg, A. L. Rossi, M. N. Tanaka, M. B. Cardoso and F. Garcia, Shape tailored magnetic nanorings for intracellular hyperthermia cancer therapy, Sci. Rep., 7, (2017) 14843, DOI: https://doi.org/10.1038/s41598-017-14633-0.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  25. X. L. Liu, Y. Yang, C. T. Ng, L. Y. Zhao, Y. Zhang, B. H. Bay, H. M. Fan and J. Ding, Magnetic vortex nanorings: A new class of hyperthermia agent for highly efficient in vivo regression of tumors, Adv. Mater., 27 (2015) 1939–1944, DOI: https://doi.org/10.1002/adma.201405036.

    Article  CAS  PubMed  Google Scholar 

  26. N. A. Usov, M. S. Nesmeyanov and V. P. Tarasov, Magnetic vortices as efficient nano heaters in magnetic nanoparticle hyperthermia, Sci. Rep., 8 (2018) 1224, DOI: https://doi.org/10.1038/s41598-017-18162-8.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. X. L. Liu, Y. F. Zhang, Y. Guo, W. B. Jiao, X. Gao, W. S. V. Lee, Y. Y. Wang, X. Deng, Y. He, J. Jiao, C. Zhang, G. Q. Hu, X. J. Liang and H. M. Fan, Electromagnetic field-programmed magnetic vortex nanodelivery system for efficacious cancer therapy, Adv. Sci., 8(18) (2021) 2100950, DOI: https://doi.org/10.1002/advs.202100950.

    Article  CAS  Google Scholar 

  28. L. H. Fu, C. Qi, Y. R. Hu, J. Lin and P. Huang, Glucose oxidase-instructed multimodal synergistic cancer therapy, Adv. Mater., 31(21) (2019) 1808325, DOI: https://doi.org/10.1002/adma.201808325.

    Article  Google Scholar 

  29. J. X. Chen, Q. Ma, M. H. Li, D. Y. Chao, L. Huang, W. W. Wu, Y. X. Fang and S. J. Dong, Glucose-oxidase like catalytic mechanism of noble metal nanozymes, Nat. Commun., 12 (2021) 3375, DOI: https://doi.org/10.1038/s41467-021-23737-1.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. W. P. Fan, N. Lu, P. Huang, Y. Liu, Z. Yang, S. Wang, G. C. Yu, Y. J. Liu, J. K. Hu, Q. J. He, J. L. Qu, T. F. Wang and X. Y. Chen, Glucose-responsive sequential generation of hydrogen peroxide and nitric oxide for synergistic cancer starving-like/gas therapy, Angew. Chem., 56(5) (2017) 1229–1233, DOI: https://doi.org/10.1002/anie.201610682.

    Article  CAS  Google Scholar 

  31. Y. F. Zhang, X. L. Liu, E. Peng, G. L. Li, W. Xiao, H. Zhang, B. Z. Yu, J. P. Wu, Y. E. Nuo and H. M. Fan, Facile synthesis of water-dispersible magnetite nanorings from surfactant-free hematite nanorings, Micro Nano Lett., 11 (2016) 814–818, DOI: https://doi.org/10.1049/mnl.2016.0304.

    Article  CAS  Google Scholar 

  32. H. M. Fan, J. B. Yi, Y. Yang, K. W. Kho, H. R. Tan, Z. X. Shen, J. Ding, X. W. Sun, M. C. Olivo and Y. P. Feng, Single-crystalline MFe2O4 nanotubes/nanorings synthesized by thermal transformation process for biological applications, ACS Nano, 3(9) (2009) 2798–2808, DOI: https://doi.org/10.1021/nn9006797.

    Article  CAS  PubMed  Google Scholar 

  33. Y. Liu, T. Chen, C. C. Wu, L. P. Qiu, R. Hu, J. Li, S. Cansiz, L. Q. Zhang, C. Cui, G. Z. Zhu, M. X. You, T. Zhang and W. H. Tan, Facile surface functionalization of hydrophobic magnetic nanoparticles, J. Am. Chem. Soc., 136 (2014) 12552, DOI: https://doi.org/10.1021/ja5060324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Y. Liu, D. L. Purich, C. C. Wu, Y. Wu, T. Chen, C. Cui, L. Q. Zhang, S. Cansiz, W. J. Hou, Y. Y. Wang, S. Y. Yang and W. H. Tan, Ionic functionalization of hydrophobic colloidal nanoparticles to form ionic nanoparticles with enzymelike properties, J. Am. Chem. Soc., 137 (2015) 14952, DOI: https://doi.org/10.1021/jacs.5b08533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Y. Z. Li, Z. G. Wang, H. R. Li and B. Q. Ding, NAD (+) cofactor regeneration by TMB-mediated horseradish-peroxidase-catalyzed reactions, ChemistrySelect, 3(39) (2018) 10900–10904, DOI: https://doi.org/10.1002/slct.201801731.

    Article  CAS  Google Scholar 

  36. D. M. Liu, C. Dong and R. T. Ma, A colorimetric method for screening alpha-glucosidase inhibitors from flavonoids using 3, 3′, 5, 5′-tetramethylbenzidine as a chromogenic probe, Colloid. Surface. B, 197 (2021) 111400, DOI: https://doi.org/10.1016/j.colsurfb.2020.111400.

    Article  CAS  Google Scholar 

  37. A. E. Deatsch and B. A. Evans, Heating efficiency in magnetic nanoparticle hyperthermia, J. Magn. Magn. Mater., 354 (2014) 163–172, DOI: https://doi.org/10.1016/j.jmmm.2013.11.006.

    Article  ADS  CAS  Google Scholar 

  38. S. Noh, S. H. Moon, T. H. Shin, Y. Lim and J. Cheon, Recent advances of magneto-thermal capabilities of nanoparticles: From design principles to biomedical applications, Nano Today, 13 (2017) 61–76, DOI: https://doi.org/10.1016/j.nantod.2017.02.006.

    Article  CAS  Google Scholar 

  39. J. H. He, G. M. Moatimid, M. A. A. Mohamed and K. Elagamy, A stretching cylindrical carreau nanofluid border layer movement with motile microorganisms and variable thermal characteristics, Int. J. Mod. Phys. B (2024) 1–29, DOI: https://doi.org/10.1142/S0217979224502230.

  40. S. J. Kou, C. H. He, X. C. Men and J. H. He, Fractal boundary layer and its basic properties, Fractals, 30(9) (2022) 2250172, DOI: https://doi.org/10.1142/S0218348X22501729.

    Article  ADS  Google Scholar 

  41. J. P. Fortin, C. Wilhelm, J. Servais, C. Ménager, J. C. Bacri and F. Gazeau, Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia, J. Am. Chem. Soc., 129 (2007) 2628–2635, DOI: https://doi.org/10.1021/ja067457e.

    Article  CAS  PubMed  Google Scholar 

  42. S. Çitoğlu, Ö. D. Coşkun, L. D. Tung, M. A. Onur and N. T. K. Thanh, DMSA-coated cubic iron oxide nanoparticles as potential therapeutic agents, Nanomedicine, 16(11) (2021) 925–941, DOI: https://doi.org/10.2217/nnm-2020-0467.

    Article  PubMed  Google Scholar 

  43. G. Kandasamy, A. Sudame, P. Bhati, A. Chakrabarty and D. Maity, Systematic investigations on heating effects of carboxylamine functionalized superparamagnetic iron oxide nanoparticles (SPIONs) based ferrofluids for in vitro cancer hyperthermia therapy, J. Mol. Liq., 256 (2018) 224–237, DOI: https://doi.org/10.1016/j.molliq.2018.02.029.

    Article  CAS  Google Scholar 

  44. X. L. Liu, B. Yan, Y. Li, X. W. Ma, W. B. Jiao, K. J. Shi, T. B. Zhang, S. Z. Chen, Y. He, X. J. Liang and H. M. Fan, Graphene oxide-grafted magnetic nanorings mediated magnetothermodynamic therapy favoring reactive oxygen species-related immune response for enhanced antitumor efficacy, ACS Nano, 14 (2020) 1936–1950, DOI: https://doi.org/10.1021/acsnano.9b08320.

    Article  CAS  PubMed  Google Scholar 

  45. J. H. He and N. Y. Abd-Elazem, The carbon nanotube-embedded boundary layer theory for energy harvesting, Facta Univ. Ser. Mech. Eng., 20(2) (2022) 211–235, DOI: https://doi.org/10.22190/FUME220221011H.

    Google Scholar 

  46. I. Armenia, M. V. Grazu Bonavia, L. De Matteis, P. Ivanchenko, G. Martra, R. Gornati, J. M. de la Fuente and G. Bernardini, Enzyme activation by alternating magnetic field: Importance of the bioconjugation methodology, J. Colloid Interface Sci., 537 (2019) 615–628, DOI: https://doi.org/10.1016/j.jcis.2018.11.058.

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from The National Natural Science Foundation of China (92048202), Innovation Capacity Support Plan of Shaanxi Province (No. 2020TD-040) and Free Exploration and Innovation Program of the First Affiliated Hospital of Xi’an Jiaotong University (2021ZYTS-11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongqian Wu.

Additional information

Qianqian Tang is an intern researcher of Institute of Regenerative and Reconstructive Medicine, First Affiliated Hospital of Xi’an Jiaotong University. She received her master’s degree from Northwestern University. Her research interests include the regulation of biomacromolecules by the magnetothermal effect of nanoparticles and immunotherapy.

Rongqian Wu is the Deputy Director of the Institute of Advanced Surgical Technology and Engineering of Xi’an Jiaotong University and one of the first batch of young top talents of Xi’an Jiaotong University. In 1996, he received his master’s degree from Xi’an Medical University. In 1999, he graduated from the Military Medical Training School of PLA General Hospital with a Doctor’s degree in general surgery. His research interests include surgical critical illness and combination therapy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Q., Xiong, R., Zhang, N. et al. Nano-magnetothermal effect enhances the glucose oxidase activity of FVIOs-GOD in antibacterial research. J Mech Sci Technol 38, 1601–1611 (2024). https://doi.org/10.1007/s12206-024-0250-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-024-0250-6

Keywords

Navigation