Skip to main content
Log in

Experimental determination of elastic properties in laminate composite material orthotropic plies

  • Original Article
  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

The theoretical and analytical models for studying the mechanical behavior of composite materials have a great importance due to the innumerable applications in new technological developments. The use of these models requires a field of knowledge in the elastic properties of composite materials. In this paper, an inverse method is applied to obtain the average elastic constants of orthotropic composite laminates and the constants of orthotropic plies. The method uses the experimental strain analysis and the constitutive models obtained by applying classical laminate theory to three laminate composite materials formed by the orthotropic plies of reinforced epoxy resin with glass. In addition, through experimental axial loading tests and the state of strain measuring with strain gages, the global stresses and the elastic constant averages as well as the orthotropic constants of plies are determined. Finally, these elastic constants show consistency when evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Shashi, Fiber reinforced metal matrix composites - a review, Materials Today: Proceedings, 39 (2021) 2214–7853.

    Google Scholar 

  2. S. Gholizadeh, A review of impact behavior in composite materials, International Journal of Mechanical and Production Engineering, 7 (2019) 35–46.

    Google Scholar 

  3. H. Abdellaoui, H. Bensalah, M. Raji, D. Rodrigue, R. Bouhfid and A. K. Qaiss, Laminate epoxy biocomposites based on clay and jute fibers, J. Bionic Eng., 14 (2017) 379–389.

    Article  Google Scholar 

  4. N. Mohd Nurazzi, A. Khalina, S. M. Sapuan, A. H. A. M. Dayang Laila, M. Rahmah and Z. Hanafee, A review: fibres, polymer matrices and composites, Pertanika J. Sci. & Technol., 25 (4) (2017) 1085–1102.

    Google Scholar 

  5. S. W. Tsai and H. T. Hahn, Introduction to Composite Materials, 1st Ed., Technomic Publishing Co, Pennsylvania, USA (1980).

    Google Scholar 

  6. R. M. Jones, Mechanics of Composite Materials, 2nd Ed., McGraw-Hill Book Company, Inc, New York, USA (1999).

    Google Scholar 

  7. R. D. Mindlin, Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates, ASME Journal of Applied Mechanics, 18 (1951) 31–38.

    Article  Google Scholar 

  8. E. Reissner, The effect of transverse shear deformation on the bending of elastic plates, ASME Journal of Applied Mechanics, 12 (1945) A68–A77.

    Article  MathSciNet  Google Scholar 

  9. M. Cho and R. R. Parmerter, An efficient higher order plate theory for laminate composites, Composite Structures, 20 (2) (1992) 113–123.

    Article  Google Scholar 

  10. S. Ramaswamy, Z. A. Shariff, A. Abdul Munaf, I. J. Leno, S. J. P. Gnanaraj and S. B. Jeshurun, Study on application of higher order lamination plate theory over various applications of natural fiber cross-ply composites, Materials Today: Proceedings, 60 (2022) 822–826.

    CAS  Google Scholar 

  11. J. Si and Y. Zhang, An enhanced higher order zigzag theory for laminate composite plates under mechanical/thermal loading, Composite Structures, 282 (2022) 115074.

    Article  CAS  Google Scholar 

  12. C. T. Sun and J. M. Whitney, Theories for the dynamic response of laminate plates, AIAA Journal, 11 (2) (1973) 178–183.

    Article  ADS  Google Scholar 

  13. N. J. Pagano and S. R. Soni, Global-local laminate variational model, Solid Int. J. Solids Structures, 19 (3) (1983) 207–228.

    Article  Google Scholar 

  14. M. Acosta-Flores, E. Jiménez-López, M. Chávez-Castillo, A. Molina-Ocampo and J. J. Delfín-Vázquez, Experimental method for obtaining the elastic properties of components of a laminate composite, Results in Physics, 12 (2019) 1500–1505.

    Article  ADS  Google Scholar 

  15. M. A. Flores, E. J. López and M. L. E. Díaz, Obtaining of a constitutive models of laminate composite materials, Elasticity of Materials, IntechOpen (2022).

  16. C. Elanchezhian, B. V. Ramnath, G. Ramakrishnan, M. Rajendrakumar, V. Naveenkumar and M. K. Saravanakumar, Review on mechanical properties of natural fiber composites, Materials Today Proceedings, 5 (1) (2018) 1785–1790.

    Article  CAS  Google Scholar 

  17. A. J. Durelli, E. A. Phillips and C. H. Tsao, Introduction to The Theoretical and Experimental Analysis of Stress and Strain, 1st Ed., McGraw-Hill, New York, USA (1958).

    Google Scholar 

  18. A. J. Durelli and D. Wu, Use of coefficients of influence to solve some inverse problems in plane elasticity, J. Appl. Mech., 50 (1983) 288–296.

    Article  ADS  Google Scholar 

  19. J. Steuben, J. Michopoulos, A. Iliopoulos and C. Turner, Inverse characterization of composite materials via surrogate modeling, Composite Structures, 132 (2015) 694–708.

    Article  Google Scholar 

  20. Z. Wang, J. F. Cárdenas-García and B. Han, Inverse method to determine elastic constants using a circular disk and moiré interferometry, Experimental Mechanics, 45 (2005) 27–34.

    Google Scholar 

  21. M. Grédiac, F. Pierron and Y. Surrel, Novel procedure for complete in-plane composite characterization using a single T-shaped specimen, Experimental Mechanics, 39 (1999) 142–149.

    Article  Google Scholar 

  22. L. Bruno and A. Poggialini, Elastic characterization of anisotropic materials by speckle interferometry, Experimental Mechanics, 45 (2005) 205–212.

    Article  Google Scholar 

  23. X. Gu and F. Pierron, Towards the design of a new standard for composite stiffness identification, Composites Part A: Applied Science and Manufacturing, 91 (2016) 448–460.

    Article  CAS  Google Scholar 

  24. C. M. Valencia, J. F. Pazos-Ospina, E. E. Franco, J. L. Ealo, D. A. D. Collazos-Burbano and G. C. Garcia, Ultrasonic determination of the elastic constants of epoxy-natural fiber composites, Physics Procedia, 70 (2015) 467–470.

    Article  ADS  CAS  Google Scholar 

  25. S. F. Hwang and C. S. Chang, Using finite element analysis/optimum design in the determination of elastic constants by vibration testing, Journal of the Chinese Institute of Engineers, 24 (2) (2001) 253–260.

    Article  Google Scholar 

  26. P. Bhaskar and R. H. Mohamed, Analytical estimation of elastic properties of polypropylene fiber matrix composite by finite element analysis, Advances in Materials Physics and Chemistry, 2012 (2012) 23–30.

    Google Scholar 

  27. L. Bruno, Mechanical characterization of composite materials by optical techniques: A review, Optics and Lasers in Engineering (104) (2018) 192–203.

  28. R. Cui and F. L. di Scalea, On the identification of the elastic properties of composites by ultrasonic guided waves and optimization algorithm, Composite Structures, 223 (2019) 110969.

    Article  Google Scholar 

  29. G. R. Liu, W. B. Ma and X. Han, An inverse procedure for determination of material constants of composite laminates using elastic waves, Computer Methods in Applied Mechanics and Engineering, 191 (33) (2002) 3543–3554.

    Article  ADS  Google Scholar 

  30. S. B. Rayhan and M. M. Rahman, Modeling elastic properties of unidirectional composite materials using Ansys Material Designer, Procedia Structural Integrity, 28 (2020) 1892–1900.

    Article  Google Scholar 

  31. M. Mehdi, A. R. Bhagat and G. R. Selokar, Experimental and numerical evaluation of elastic properties of bi-directional carbon epoxy composites, Optik, 257 (2022) 168818.

    Article  ADS  Google Scholar 

  32. C. C. Lin and T. C. Ko, Adhesive interface element for bonding of laminate plates, Composite Structures, 25 (1–4) (1993) 217–225.

    Article  ADS  Google Scholar 

  33. B. Paluch, Analysis of geometric imperfections affecting the fibers in unidirectional composites, Journal of Composite Materials, 30 (4) (1996) 454–485.

    Article  ADS  MathSciNet  CAS  Google Scholar 

  34. R. D. Hale and D. O. H. Adams, Influence of in-plane fiber misalignment on moiré interferometry results, Journal of Composite Materials, 31 (24) (1997) 2444–2459.

    Article  ADS  Google Scholar 

  35. Q. D. Zeng, Z. L. Wang and L. Ling, A study of the influence of interfacial damage on stress concentrations in unidirectional composites, Composite Science and Technology, 57 (1) (1997) 129–135.

    Article  CAS  Google Scholar 

  36. L. K. Jain and Y. W. Mai, Stresses and deformation induced during manufacturing: theorical analysis of composite cylinders and shells, Journal of Composite Materials, 31 (7) (1997) 672–695.

    Article  ADS  Google Scholar 

  37. C. C. Perry, Strain-gage reinforcement effects on orthotropic materials, Manual on Experimental Methods for Mechanical Testing of Composites, Springer, Dordrecht (1989) 39–44.

    Chapter  Google Scholar 

  38. J. Dally and F. Riley, Experimental Stress Analysis, 2nd Ed., McGraw-Hill, New York, USA (2001).

    Google Scholar 

  39. S. W. Fowser, R. B. Pipes and D. W. Wilson, On the determination of laminate and lamina shear response by tension tests, Composites Science and Technology, 26 (1) (1986) 31–36.

    Article  CAS  Google Scholar 

  40. Micro-Measurements, Errors Due to Transverse Sensitivity in Strain Gages, Technical Note TN-509, Micro-Measurements, Vishay Precision Group, USA (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Acosta-Flores.

Additional information

Mario Acosta Flores was born in Cuernavaca, Morelos, México. He received M.S. and Ph.D. degrees in Mechanical Engineering from the Autonomous National University of Mexico, UNAM in 2000 and 2010, respectively. He has extensive experience in Experimental Mechanics since 2002. He has worked on projects for structural redesign for International and Bombardier. He is currently a Research Professor at the Autonomous University of the State of Morelos, Mexico, and his research lines are composite materials, experimental analysis of efforts in scale models, thermal efforts and biomechanics.

Marta L. Eraña Díaz was born in Tamaulipas, México. She received a B.S. degree in Mathematics Applied to Computer Science at the University Autonomous Metropolitan, Mexico City. She received an M.S. degree in Cognitive Sciences in 2016 and a Ph.D. degree in Engineering and Applied Sciences in 2020, both from the University Autonomous of Morelos State in Cuernavaca, Mexico. Her research interests include the design and development of technological tools.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acosta-Flores, M., Eraña-Díaz, M.L. Experimental determination of elastic properties in laminate composite material orthotropic plies. J Mech Sci Technol 38, 1317–1328 (2024). https://doi.org/10.1007/s12206-024-0226-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-024-0226-6

Keywords

Navigation