Skip to main content
Log in

Finite element analysis of cross-ply and quasi-isotropic laminate plates with a center hole for variable thickness under transverse loading using shear deformation theories

  • Original Article
  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Laminated plates with holes are often used in industrial applications such as aeronautics, automobiles, and marine. It is necessary to present a study of the combined effect of deformation theories and thickness variation for the laminated plate with a hole. This manuscript considers analysis theories named: Kirchhoff, layer-wise, and Reissner-Mindlin, to study their validity for different thickness aspect ratios under transverse compression loading. Studies are conducted on CFRP laminate (symmetric cross-ply and quasi-isotropic), and the performed numerical (FEM) analysis processes are validated through existing literature. Transverse shear, circumferential, radial, and radial-hoop stress variations with stress concentration factors are presented along the thickness and around the hole configurations (18 cases are covered) of the plate. Also, the resultant effects are discussed on in-plane, and out-of-plane stresses for laminates to specify the selection of design conditions (theory, thickness, model, and laminates). This research may provide engineers and researchers with various assessments and design insight for laminate structures with a hole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.-H. Minh and W. Becker, Open circular hole in a finite plate under tension treated by airy stress function method, Anal. Shells, Plates, Beams, Springer, Cham (2020), https://doi.org/10.1007/978-3-030-47491-1_16.

    Google Scholar 

  2. R. B. Heywood, Designing by Photoelasticity, Chapman and Hall, London (1952).

    Google Scholar 

  3. W. D. Pilkey, D. F. Pilkey and Z. Bi, Peterson’s Stress Concentration Factors, Fourth ed., Wiley (2020).

  4. R. E. Peterson, Stress Concentration Factors, John Wiley & Sons (1997).

  5. W.-D. Tseng and J.-Q. Tarn, Three-dimensional solution for the stress field around a circular hole in a plate, J. Mech., 30 (2014) 611–624, https://doi.org/10.1017/jmech.2014.48.

    Article  Google Scholar 

  6. R. Dimitri, N. Fantuzzi, F. Tornabene and G. Zavarise, Innovative numerical methods based on SFEM and IGA for computing stress concentrations in isotropic plates with discontinuities, Int. J. Mech. Sci., 118 (2016) 166–187.

    Article  Google Scholar 

  7. M. Jafari and E. Ardalani, Stress concentration in finite metallic plates with regular holes, Int. J. Mech. Sci., 106 (2016) 220–230.

    Article  Google Scholar 

  8. N. Bojic and Z. Jugovic, Stress concentration in plates with one hole, Sixth International Symposium about Forming and Design in Mechanical Engineering (2010) 73–78.

  9. Z. Yang, C. B. Kim, C. Cho and H. G. Beom, The concentration of stress and strain in finite thickness elastic plate containing a circular hole, Int. J. Solids Struct., 45 (2008) 713–731, https://doi.org/10.1016/j.ijsolstr.2007.08.030.

    Article  MATH  Google Scholar 

  10. Z. Yang, The interaction of holes on stress and strain concentrations in uniaxially loaded tensile plates, Appl. Mech. Mater., 268–270 (2013) 767–771, https://doi.org/10.4028/www.scientific.net/amm.

    Google Scholar 

  11. N. K. Jain and N. D. Mittal, Finite element analysis for stress concentration and deflection in isotropic, orthotropic and laminated composite plates with central circular hole under transverse static loading, Mater. Sci. Eng. A, 498 (2008) 115–124, https://doi.org/10.1016/j.msea.2008.04.078.

    Article  Google Scholar 

  12. S. C. Tan, Finite-width correction factors for anisotropic plate containing a central opening, J. Compos. Mater., 22 (1988) 1080–1097, https://doi.org/10.1177/002199838802201105.

    Article  Google Scholar 

  13. N. J. Hoff and C. Muser, Stress concentration factors for cylindrically orthotropic plates, J. Compos. Mater., 16 (1982) 313–317, https://doi.org/10.1177/002199838201600405.

    Article  Google Scholar 

  14. W. Zhen and C. Wanji, Stress analysis of laminated composite plates with a circular hole according to a single-layer higher-order model, Compos. Struct., 90 (2009) 122–129, https://doi.org/10.1016/j.compstruct.2009.02.010.

    Article  Google Scholar 

  15. B. A. Bednarcyk, J. Aboudi and P. W. Yarrington, Determination of the Shear Stress Distribution in a Laminate From the Applied Shear Resultant — A Simplified Shear Solution, NASA, USA (2007), https://doi.org/10.13140/2.1.3629.9521.

    Google Scholar 

  16. J. S. Ahn, P. K. Basu and K. S. Woo, Hierarchic layer models for anisotropic laminated plates, KSCE J. Civ. Eng., 15 (2011) 1067–1080, https://doi.org/10.1007/s12205-011-1142-8.

    Article  Google Scholar 

  17. S. Ren and G. Zhao, High-order layerwise formulation of transverse shear stress field for laminated composite beams, AIAA J, 57 (2019) 2171–2184, https://doi.org/10.2514/1.J057412.

    Article  Google Scholar 

  18. N. Grover, D. K. Maiti and B. N. Singh, Flexural behavior of general laminated composite and sandwich plates using a secant function based shear deformation theory, Lat Am J. Solids Struct, 11 (2014) 1275–1297, https://doi.org/10.1590/S1679-78252014000700011.

    Article  Google Scholar 

  19. T. Özben and N. Arslan, FEM analysis of laminated composite plate with rectangular hole and various elastic modulus under transverse loads, Appl Math Model, 34 (2010) 1746–1762, https://doi.org/10.1016/j.apm.2009.09.020.

    Article  MATH  Google Scholar 

  20. P. H. Shah and R. C. Batra, Through-the-thickness stress distributions near edges of composite laminates using stress recovery scheme and third order shear and normal deformable theory, Compos Struct, 131 (2015) 397–413, https://doi.org/10.1016/j.compstruct.2015.05.041.

    Article  Google Scholar 

  21. Z. Wu, H. Zhu and W. J. Chen, An advanced higher-order theory for laminated composite plates with general lamination angles, Acta Mech Sin, 27 (2011) 720–729, https://doi.org/10.1007/s10409-011-0455-7.

    Article  MathSciNet  MATH  Google Scholar 

  22. A. S. Sayyad and Y. M. Ghugal, Effect of stress concentration on laminated plates, J. Mech, 29 (2013) 241–252, https://doi.org/10.1017/jmech.2012.131.

    Article  Google Scholar 

  23. Y. M. Ghugal and S. K. Kulkarni, Thermal response of symmetric cross-ply laminated plates subjected to linear and non-linear thermo-mechanical loads, J. Therm Stress, 36 (2013) 466–479, https://doi.org/10.1080/01495739.2013.770664.

    Article  Google Scholar 

  24. V. V. Vasil’ev and L. V. Fedorov, Geometric elasticity problem of stress concentration in a plate with a circular hole, Mech Solids, 43 (2008) 528–538, https://doi.org/10.3103/S002565440804002X.

    Article  Google Scholar 

  25. J.-H. Kang, Exact solutions for stresses, strains, and displacements of a rectangular plate with an arbitrarily located circular hole subjected to in-plane bending moment, Int. J. Mech. Sci., 89 (2014) 482–486, https://doi.org/10.1016/j.ijmecsci.2014.10.019.

    Article  Google Scholar 

  26. R. P. Khandelwal, A. Chakrabarti and P. Bhargava, An efficient FE model and least square error method for accurate calculation of transverse shear stresses in composites and sandwich laminates, Compos Part B Eng., 43 (2012) 1695–1704, https://doi.org/10.1016/j.compositesb.2012.01.030.

    Article  Google Scholar 

  27. H. Zhang, A. N. Dickson, Y. Sheng, T. McGrail, D. P. Dowling and C. Wang, Failure analysis of 3D printed woven composite plates with holes under tensile and shear loading, Compos Part B Eng., 186 (2020) 107835, https://doi.org/10.1016/j.compositesb.2020.107835.

    Article  Google Scholar 

  28. C. Huang, M. He, Y. He, J. Xiao, J. Zhang and S. Ju, Exploration relation between interlaminar shear properties of thin-ply laminates under short-beam bending and meso-structures, J. Compos Mater, 52 (2018) 2375–2386, https://doi.org/10.1177/0021998317745586.

    Article  Google Scholar 

  29. T. Ogasawara, S. Hanamitsu, T. Ogawa, S. Y. Moon, Y. Shimamura and Y. Inoue, Mechanical properties of cross-ply and quasi-isotropic composite laminates processed using aligned multi-walled carbon nanotube/epoxy prepreg, Adv Compos Mater, 26 (2017) 157–168, https://doi.org/10.1080/09243046.2016.1226688.

    Article  Google Scholar 

  30. C. T. Wang, T. S. Hsieh, H. C. Hsu, Y. C. Chen and C. C. Chiang, Curing monitoring of cross-ply and quasi-isotropic-ply carbon fiber/epoxy composite material with metal-coated fiber Bragg grating sensors, Optik (Stuttg), 184 (2019) 490–498, https://doi.org/10.1016/j.ijleo.2019.04.126.

    Article  Google Scholar 

  31. S. Timoshenko and J. N. Goodier, Theory of Elasticity, McGraw-Hill Book Company, New York (1951).

    MATH  Google Scholar 

  32. E. Reissner, On the theory of bending of elastic plates, J. Math Phys, 23 (1944) 184–191.

    Article  MathSciNet  MATH  Google Scholar 

  33. R. Mindlin, Influence of rotary inertia and shear on flexural motion of isotropic elastic plates, ASME J. Appl Mech, 18 (1951) 31–38.

    Article  MATH  Google Scholar 

  34. B. F. Vlasov, On one case of bending of rectangular thick plates, Vestn Mosk Univ., 2 (1957) 25–34 (in Russian).

    Google Scholar 

  35. M. Levinson, An accurate, simple theory of the statics and dynamics of elastic plates, Mech Res Commun, 7 (1980) 343–350.

    Article  MATH  Google Scholar 

  36. M. V. V. Murthy, An Improved Transverse Shear Deformation Theory for Laminated Anisotropic Plates, NASA Technical Paper 1903, NASA, USA (1981).

    Google Scholar 

  37. G. Jemielita, Technical theory of plates with moderate thickness, Eng. Trans., 23 (1975) 483–499.

    MATH  Google Scholar 

  38. R. Schmidt, A refined nonlinear theory of plates with transverse shear deformation, J. Indian Math Soc., 27 (1977) 23–38.

    MATH  Google Scholar 

  39. J. N. Reddy, A simple higher-order theory for laminated composite plates., J. Appl Mech Trans ASME, 51 (1984) 745–752, https://doi.org/10.1115/1.3167719.

    Article  MATH  Google Scholar 

  40. G. Shi, K. Y. Lam, T. E. Tay and J. N. Reddy, Assumed strain quadrilateral C0 laminated plate element based on third-order shear deformation theory, Struct Eng. Mech, 8 (1999) 623–637, https://doi.org/10.12989/sem.1999.8.6.623.

    Article  Google Scholar 

  41. R. M. J. Groh and P. M. Weaver, Static inconsistencies in certain axiomatic higher-order shear deformation theories for beams, plates and shells, Compos Struct, 120 (2015) 231–245, https://doi.org/10.1016/j.compstruct.2014.10.006.

    Article  Google Scholar 

  42. B. A. Djalil, B. Hichem, B. A. Anis and B. K. Halim, A new higher order shear and normal deformation theory for bending analysis of advanced composite plates, Third Int. Conf. Energy, Mater. Appl. Energ. Pollut., Constantine, Algeria (2016) 640–646.

  43. E. Carrera, S. Brischetto, M. Cinefra and M. Soave, Effects of thickness stretching in functionally graded plates and shells, Compos Part B Eng., 42 (2011) 123–133, https://doi.org/10.1016/j.compositesb.2010.10.005.

    Article  Google Scholar 

  44. A. M. A. Neves, A. J. M. Ferreira, E. Carrera, C. M. C. Roque, M. Cinefra and R. M. N. Jorge, A quasi-3D sinusoidal shear deformation theory for the static and free vibration analysis of functionally graded plates, Compos Part B Eng., 43 (2012) 711–725, https://doi.org/10.1016/j.compositesb.2011.08.009.

    Article  Google Scholar 

  45. K. P. Soldatos, A transverse shear deformation theory for homogeneous monoclinic plates, Acta Mech, 94 (1992) 195–220, https://doi.org/10.1007/BF01176650.

    Article  MathSciNet  MATH  Google Scholar 

  46. M. Karama, K. S. Afaq and S. Mistou, Mechanical behaviour of laminated composite beam by the new multi-layered laminated composite structures model with transverse shear stress continuity, Int. J. Solids Struct, 40 (2003) 1525–1546, https://doi.org/10.1016/S0020-7683(02)00647-9.

    Article  MATH  Google Scholar 

  47. M. Aydogdu, Comparison of various shear deformation theories for bending, buckling, and vibration of rectangular symmetric cross-ply plate with simply supported edges, J. Compos Mater, 40 (2006) 2143–2155, https://doi.org/10.1177/0021998306062313.

    Article  Google Scholar 

  48. H. Saidi, A. Tounsi and A. E. A. Adda.Bedia, A hyperbolic shear and normal deformation theory for deflection and stresses of FGM sandwich plate, CSNDD 2016 - International Conference on Structural Nonlinear Dynamics and Diagnosis, 83 (2016).

  49. M. Di Sciuva, An improved shear-deformation theory for moderately thick multilayered anisotropic shells and plates, J Appl. Mech. Trans. ASME, 54 (1987) 589–596, https://doi.org/10.1115/1.3173074.

    Article  MATH  Google Scholar 

  50. E. Carrera, Theories and finite elements for multilayered, anisotropic, composite plates and shells, Arch Comput Methods Eng. State Art Rev., 9 (2002) 87–140.

    Article  MathSciNet  MATH  Google Scholar 

  51. E. Carrera and G. Giunta, Refined beam theories based on a unified formulation, Int. J. Appl. Mech., 2 (2010) 117–143, https://doi.org/10.1142/S1758825110000500.

    Article  Google Scholar 

  52. Y. M. Ghugal and R. P. Shimpi, A review of refined shear deformation theories of isotropic and anisotropic laminated plates, J. Reinf Plast Compos, 21 (2002) 775–813, https://doi.org/10.1177/073168402128988481.

    Article  Google Scholar 

  53. M. I. Izzi, A. Catapano and M. Montemurro, Strength and mass optimisation of variable-stiffness composites in the polar parameters space, Struct Multidiscip Optim, 64 (2021) 2045–2073, https://doi.org/10.1007/s00158-021-02963-7.

    Article  MathSciNet  Google Scholar 

  54. G. A. Fiordilino, M. I. Izzi and M. Montemurro, A general isogeometric polar approach for the optimisation of variable stiffness composites: application to eigenvalue buckling problems, Mech Mater, 153 (2021) 103574, https://doi.org/10.1016/j.mechmat.2020.103574.

    Article  Google Scholar 

  55. M. Montemurro and A. Catapano, A general B-spline surfaces theoretical framework for optimisation of variable angle-tow laminates, Compos Struct, 209 (2019) 561–578, https://doi.org/10.1016/j.compstruct.2018.10.094.

    Article  Google Scholar 

  56. A. Catapano and M. Montemurro, Strength optimisation of variable angle-tow composites through a laminate-level failure criterion, J. Optim Theory Appl., 187 (2020) 683–706, https://doi.org/10.1007/s10957-020-01750-6.

    Article  MathSciNet  MATH  Google Scholar 

  57. A. Brugnoli, D. Alazard, V. Pommier-Budinger and D. Matignon, Port-hamiltonian formulation and symplectic discretization of plate models part ii: kirchhoff model for thin plates, Appl. Math Model, 75 (2019) 961–981, https://doi.org/10.1016/j.apm.2019.04.036.

    Article  MathSciNet  MATH  Google Scholar 

  58. J. M. Whitney and A. W. Leissa, Analysis of a simply supported laminated anisotropic rectangular plate, AIAA J., 8 (1970) 28–33, https://doi.org/10.2514/3.5601.

    Article  MATH  Google Scholar 

  59. E. Oñate, Thick/thin plates, Reissner-Mindlin theory, Struct. Anal. with Finite Elem, Method Linear Statics, Springer, Dordrecht (2013) 291–381, https://doi.org/10.1007/978-1-4020-8743-1_6.

    Google Scholar 

  60. E. J. Barbero, J. N. Reddy and J. Teply, An accurate determination of stresses in thick laminates using a generalized plate theory, Int. J. Numer Methods Eng., 29 (1990) 1–14, https://doi.org/10.1002/nme.1620290103.

    Article  MATH  Google Scholar 

  61. J. M. Whitney and N. J. Pagano, Shear deformation in heterogeneous anisotropic plates, J Appl. Mech., 37 (1970) 1031–1036, https://doi.org/10.1115/1.3408654.

    Article  MATH  Google Scholar 

  62. J. N. Reddy and W. C. Chao, A comparison of closed-form and finite-element solutions of thick laminated anisotropic rectangular plates, Nucl. Eng. Des., 64 (1981) 153–167, https://doi.org/10.1016/0029-5493(81)90001-7.

    Article  Google Scholar 

  63. E. J. Barbero, Introduction to Composite Materials Design, Third Ed., CRC Press (2017) https://doi.org/10.1201/9781315296494.

  64. G. Kirchhoff, Über das Gleichgewicht und die Bewegung einer elastischen scheibe, J. Reine Ang Math, 40 (1850) 51–88.

    MATH  Google Scholar 

  65. J. N. Reddy, On the generalization of displacement-based laminate theories, Appl. Mech Rev., 42 (1989) 213–322, https://doi.org/10.1115/1.3152393.

    Article  Google Scholar 

  66. J. Álvarez-Pérez and F. Peña, Mindlin-reissner analytical model with curvature for tunnel ventilation shafts analysis, Mathematics, 9 (2021) 1–17, https://doi.org/10.3390/math9101096.

    Article  Google Scholar 

  67. Y. Hodhigere, J. S. Jha, A. Tewari and S. Mishra, Finite element analysis-based approach for stress concentration factor calculation, Proc. Fatigue, Durab. Fract. Mech. (2018) 1–6, https://doi.org/10.1007/978-981-10-6002-1_1.

  68. Y. Kim and J. Park, A theory for the free vibration of a laminated composite rectangular plate with holes in aerospace applications, Compos Struct, 251 (2020) 112571, https://doi.org/10.1016/j.compstruct.2020.112571.

    Article  Google Scholar 

  69. Dassault Systèmes, ABAQUS Documentation 6.14, Dassault Systèmes, USA.

  70. N. J. Pagano, Exact solutions for rectangular bidirectional composites and sandwich plates, J. Compos Mater, 4 (1970) 20–34, https://doi.org/10.1177/002199837000400102.

    Article  Google Scholar 

  71. Y. Xu, J. Zhu, Z. Wu, Y. Cao, Y. Zhao and W. Zhang, A review on the design of laminated composite structures: constant and variable stiffness design and topology optimization, Adv. Compos Hybrid Mater, 1 (2018) 460–477, https://doi.org/10.1007/s42114-018-0032-7.

    Article  Google Scholar 

  72. S. A. Kumar, R. Rajesh and S. Pugazhendhi, A review of stress concentration studies on fibre composite panels with holes/cutouts, Proc. Inst. Mech. Eng. Part L. J. Mater Des. Appl., 234 (2020) 1461–1472, https://doi.org/10.1177/1464420720944571.

    Google Scholar 

  73. J. H. Crews, C. S. Hong and I. S. Raju, Stress-Concentration Factors for Finite Orthotopic Laminates With a Pin-Loaded Hole, NASA Technical Paper 1862, NASA, USA (1981).

    Google Scholar 

Download references

Acknowledgments

This research is supported by Inha University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chongdu Cho.

Ethics declarations

There is no conflict of interest.

Additional information

Chongdu Cho is a Professor of mechanical engineering at Inha University, Incheon, South Korea. His research includes many fields, especially computational mechanics, composite materials, automotive engineering, robotics, and biomedical appliances.

Vivek Kumar Dhimole is a Researcher in the Department of Mechanical Engineering at Inha University, Incheon, South Korea. His research interests include computational mechanics, composite materials modeling and analysis, and biomechanics.

Pruthvi Serrao is an Assistant Professor at the Department of Integrated System Engineering, School of Global Convergence Studies (INHA University), Incheon, Korea. His major research interests are aligned towards mechanism design and structural analysis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhimole, V.K., Serrao, P. & Cho, C. Finite element analysis of cross-ply and quasi-isotropic laminate plates with a center hole for variable thickness under transverse loading using shear deformation theories. J Mech Sci Technol 37, 5281–5296 (2023). https://doi.org/10.1007/s12206-023-0930-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-023-0930-7

Keywords

Navigation