Skip to main content
Log in

Study on suppression strategy of jet lag effect in melt electrowriting

  • Original Article
  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

The melt electrowriting (MEW) has broad applications in regenerative medicine and micro-nano electronics. It is an efficient micro-nano scale additive manufacturing technology; however, the fiber jet lag effect of MEW limits the deposition precision and resolution of fiber shape. In this study, the principle of the jet lag effect is studied to overcome the defect of printed structure distortion and improve the ability to print complex structures. A mathematical model of trailing fiber trajectory is established. The study covers jet lag and liquid rope coiling analysis at different speeds. A strategy is adopted by introducing a buffer zone at the corner of the printing structure. The printing path is subdivided and optimized to suppress the influence of jet lag. The results show that the deposited fibers' corner radius is around 63.81±5.66 ìm, which is significantly smaller than that of unoptimized groups. Finally, by utilizing the improved printing paths, the high-precision and complex structures are printed, which demonstrates the feasibility of optimizing the buffer zone for the MEW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Huang, X. Wang, Y. Duan, N. Bu and Z. Yin, Controllable self-organization of colloid microarrays based on finite length effects of electrospun ribbons, Soft Matter, 8 (2012) 8302–8311.

    Article  Google Scholar 

  2. A. Hrynevich, I. Liashenko and P. D. Dalton, Accurate prediction of melt electrowritten laydown patterns from simple geometrical considerations, Advanced Materials Technologies, 5 (2020) 2000772.

    Article  Google Scholar 

  3. D. Sun, C. Chang, S. Li and L. Lin, Near-field electrospinning, Nano Letters, 6 (2006) 839–842.

    Article  Google Scholar 

  4. P. Mieszczanek, T. M. Robinson, P. D. Dalton and D. W. Hutmacher, Convergence of machine vision and melt electrowriting, Advanced Materials, 33 (2021) 2100519.

    Article  Google Scholar 

  5. Y. Huang, N. Bu, Y. Duan, Y. Pan, H. Liu, Z. Yin and Y. Xiong, Electrohydrodynamic direct-writing, Nanoscale, 5 (2013) 12007–12017.

    Article  Google Scholar 

  6. O. Bas, D. D. Angella, J. G. Baldwin, N. J. Castro, F. M. Wunner, N. T. Saidy, S. Kollmannsberger, A. Reali, E. Rank, E. M. De-Juan-Pardo and D. W. Hutmacher, An integrated design, material, and fabrication platform for engineering biomechanically and biologically functional soft tissues, ACS Applied Materials and Interfaces, 9 (2017) 29430–29437.

    Article  Google Scholar 

  7. N. Gjorevski, N. Sachs, A. Manfrin, S. Giger, M. E. Bragina, P. Ordóñez-Morñn, H. Clevers and M. P. Lutolf, Designer matrices for intestinal stem cell and organoid culture, Nature, 539 (2016) 560–564.

    Article  Google Scholar 

  8. T. Chen, H. Jiang, Y. Zhu, X. Chen, D. Zhang, X. Li, F. Shen, H. Xia, Y. Min and K. Xie, Highly ordered 3D tissue engineering scaffolds as a versatile culture platform for nerve cells growth, Macromolecular Bioscience, 21 (2021) e2100047.

    Article  Google Scholar 

  9. M. Shahverdi, S. Seifi, A. Akbari, K. Mohammadi, A. Shamloo and M. R. Movahhedy, Melt electrowriting of PLA, PCL, and composite PLA/PCL scaffolds for tissue engineering application, Scientific Reports, 12 (2022) 19935.

    Article  Google Scholar 

  10. A. Daghrery, I. J. de Souza Araújo, M. Castilho, J. Malda and M. C. Bottino, Unveiling the potential of melt electrowriting in regenerative dental medicine, Acta Biomaterialia, 156 (2022) 88–109.

    Article  Google Scholar 

  11. P. N. Bernal, P. Delrot, D. Loterie, Y. Li, J. Malda, C. Moser and R. Levato, Volumetric bioprinting of complex living- tissue constructs within seconds, Advanced Materials, 31 (2019) 1904209.

    Article  Google Scholar 

  12. N. T. Saidy, F. Wolf, O. Bas, H. Keijdener, D. W. Hutmacher, P. Mela and E. M. De-Juan-Pardo, Biologically inspired scaffolds for heart valve tissue engineering via melt electrowriting, Small, 15 (2019) e1900873.

    Article  Google Scholar 

  13. S. Bertlein, G. Hochleitner, M. Schmitz, J. Tessmar, M. Raghunath, P. D. Dalton and J. Groll, Permanent hydrophilization and generic bioactivation of melt electrowritten scaffolds, Advanced Healthcare Materials, 8 (2019) 1801544.

    Article  Google Scholar 

  14. M. L. Muerza-Cascante, A. Shokoohmand, K. Khosrotehrani, D. Haylock, P. D. Dalton, D. W. Hutmacher and D. Loessner, Endosteal-like extracellular matrix expression on melt electrospun written scaffolds, Acta Biomaterialia, 52 (2017) 145–158.

    Article  Google Scholar 

  15. C. Xie, Q. Gao, P. Wang, L. Shao, H. Yuan, J. Fu, W. Chen and Y. He, Structure-induced cell growth by 3D printing of heterogeneous scaffolds with ultrafine fibers, Materials and Design, 181 (2019) 108092.

    Article  Google Scholar 

  16. G. Hochleitner, F. Chen, C. Blum, P. D. Dalton, B. Amsden and J. Groll, Melt electrowriting below the critical translation speed to fabricate crimped elastomer scaffolds with non-linear extension behaviour mimicking that of ligaments and tendons, Acta Biomaterialia, 72 (2018) 110–120.

    Article  Google Scholar 

  17. J. H. Jordahl, L. Solorio, H. Sun, S. Ramcharan, C. B. Teeple, H. R. Haley, K. J. Lee, T. W. Eyster, G. D. Luker, P. H. Krebsbach and J. Lahann, 3D jet writing: functional microtissues based on tessellated scaffold architectures, Advanced Materials, 30 (2018) 1707196.

    Article  Google Scholar 

  18. T. D. Brown, A. Slotosch, L. Thibaudeau, A. Taubenberger, D. Loessner, C. Vaquette, P. D. Dalton and D. W. Hutmacher, Design and fabrication of tubular scaffolds via direct writing in a melt electrospinning mode, Biointerphases, 7 (2012) 13.

    Article  Google Scholar 

  19. M. Castilho, A. van Mil, M. Maher, C. H. G. Metz, G. Hochleitner, J. Groll, P. A. Doevendans, K. Ito, J. P. G. Sluijter and J. Malda, Melt electrowriting allows tailored microstructural and mechanical design of scaffolds to advance functional human myocardial tissue formation, Advanced Functional Materials, 28 (2018) 1803151.

    Article  Google Scholar 

  20. H. Xu, I. Liashenko, A. Lucchetti, L. Du, Y. Dong, D. Zhao, J. Meng, H. Yamane and P. D. Dalton, Designing with circular arc toolpaths to increase the complexity of melt electrowriting, Advanced Materials Technologies (2022) 2101676.

  21. Z. Zhang, H. He, W. Fu, D. Ji and S. Ramakrishna, Electro-hydrodynamic direct-Writing technology toward patterned ultra-thin fibers: advances, materials and applications, Nano Today, 35 (2020) 100942.

    Article  Google Scholar 

  22. G. Bahcecioglu, N. Hasirci, B. Bilgen and V. Hasirci, A 3D printed PCL/hydrogel construct with zone-specific biochemical composition mimicking that of the meniscus, Biofabrication, 11 (2019) 25002.

    Article  Google Scholar 

  23. S. Ashour and H. Xu, Melt electrowriting: A study of jet diameters and jet speeds along the spinline, Polymers for Advanced Technologies, 33 (2022) 3013–3016.

    Article  Google Scholar 

  24. J. Meng, F. Boschetto, S. Yagi, E. Marin, T. Adachi, X. Chen, G. Pezzotti, S. Sakurai, H. Yamane and H. Xu, Design and manufacturing of 3D high-precision micro-fibrous poly (l-lactic acid) scaffold using melt electrowriting technique for bone tissue engineering, Materials and Design, 210 (2021) 110063.

    Article  Google Scholar 

  25. J. C. Kade and P. D. Dalton, Polymers for melt electrowriting, Advanced Healthcare Materials, 10 (2021) 2001232.

    Article  Google Scholar 

  26. F. M. Wunner, M. L. Wille, T. G. Noonan, O. Bas, P. D. Dalton, E. M. De Juan Pardo and D. W. Hutmacher, Melt electrospinning writing of highly ordered large volume scaffold architectures, Advanced Materials, 30 (2018) 1706570.

    Article  Google Scholar 

  27. M. de Ruijter, A. Hrynevich, J. N. Haigh, G. Hochleitner, M. Castilho, J. Groll, J. Malda and P. D. Dalton, Out-of-plane 3D-printed microfibers improve the shear properties of hydrogel composites, Small, 14 (2018) 1702773.

    Article  Google Scholar 

  28. B. Jia, L. Yu, F. Fu, L. Li, J. Zhou and L. Zhang, Preparation of helical fibers from cellulose-cuprammonium solution based on liquid rope coiling, RSC Advances, 4 (2014) 9112–9117.

    Article  Google Scholar 

  29. N. M. Ribe, Liquid rope coiling: a synoptic view, Journal of Fluid Mechanics, 812 (2017) R2.

    Article  MathSciNet  MATH  Google Scholar 

  30. L. Shao, Q. Gao, C. Xie, J. Fu, M. Xiang and Y. He, Bioprinting of cell-laden microfiber: can it become a standard product?, Advanced Healthcare Materials, 8 (2019) 1900014.

    Article  Google Scholar 

  31. Y. Jin, C. Xie, Q. Gao, X. Zhou, G. Li, J. Du and Y. He, Fabrication of multi-scale and tunable auxetic scaffolds for tissue engineering, Materials and Design, 197 (2021) 109277.

    Article  Google Scholar 

  32. Q. Gao, C. Xie, P. Wang, M. Xie, H. Li, A. Sun, J. Fu and Y. He, 3D printed multi-scale scaffolds with ultrafine fibers for providing excellent biocompatibility, Materials Science and Engineering: C, 107 (2020) 110269.

    Article  Google Scholar 

  33. L. Shao, Q. Gao, C. Xie, J. Fu, M. Xiang and Y. He, Synchronous 3D bioprinting of large-scale cell-laden constructs with nutrient networks, Advanced Healthcare Materials, 9 (2020) 1901142.

    Article  Google Scholar 

  34. A. Piegat, A. Niemczyk, A. R. Boccaccini, F. M. El and L. Liverani, Hierarchical multi-layered scaffolds based on electro-fluidodynamic processes for tissue engineering, Biomedical Materials, 16 (2021).

  35. J. Kim, E. Bakirci, K. L. O’Neill, A. Hrynevich and P. D. Dalton, Fiber bridging during melt electrowriting of poly (ε-caprolactone) and the influence of fiber diameter and wall height, Macromo-lecular Materials and Engineering, 306 (2021) 2000685.

    Article  Google Scholar 

  36. G. Hochleitner, A. Youssef, A. Hrynevich, J. N. Haigh, T. Jungst, J. Groll and P. D. Dalton, Fibre pulsing during melt electrospinning writing, BioNanoMaterials, 17 (2016).

  37. G. Hochleitner, T. Jungst, T. D. Brown, K. Hahn, C. Moseke, F. Jakob, P. D. Dalton and J. Groll, Additive manufacturing of scaffolds with sub-micron filaments via melt electrospinning writing, Biofabrication, 7 (2015) 35002.

    Article  Google Scholar 

  38. A. Daneshfar, L. F. Dumée, T. C. Hughes and L. Kong, Thermally-stable photo-curing chemistry for additive manufacturing by direct melt electrowriting, Additive Manufacturing, 51 (2022) 102623.

    Article  Google Scholar 

  39. H. Luan, Q. Zhang, T. L. Liu, X. Wang, S. Zhao, H. Wang, S. Yao, Y. Xue, J. W. Kwak, W. Bai, Y. Xu, M. Han, K. Li, Z. Li, X. Ni, J. Ye, D. Choi, Q. Yang, J. H. Kim, S. Li, S. Chen, C. Wu, D. Lu, J. K. Chang, Z. Xie, Y. Huang and J. A. Rogers, Complex 3D microfluidic architectures formed by mechanically guided compressive buckling, Science Advances, 7 (2021) j3686.

    Article  Google Scholar 

  40. G. F. Del, G. D’Avino and P. L. Maffettone, Microfluidic formation of crystal-like structures, Lab on a Chip, 21 (2021) 2069–2094.

    Article  Google Scholar 

Download references

Acknowledgments

This work was sponsored by the Academic Cultivation and Innovation Exploration Project of Guizhou Institute of Technology (No. GZLGXM-26), and the Young Scientific Technical Talents Development Fund of Guizhou Province (No. QJHKYC [2022]359).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongfei Zou.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Zhongfei Zou received B.Sc. degree (2013) and Ph.D. degree (2019) in mechanical engineering from Guizhou University. She is currently an Associate Professor at Guizhou Institute of Technology. Her main research interests include additive manufacturing and tissue engineering.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, Z., Wang, Y., Shen, Z. et al. Study on suppression strategy of jet lag effect in melt electrowriting. J Mech Sci Technol 37, 4801–4808 (2023). https://doi.org/10.1007/s12206-023-0832-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-023-0832-8

Keywords

Navigation