Skip to main content
Log in

High temperature synthesis of TiO2 nanoparticles as a photochemical catalyst for hydrogen generation using premixed flame burner

  • Original Article
  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

Many researches on hydrogen generation by TiO2 nanoparticles as photochemical catalysts have been conducted. In this study, experiments were performed to figure out the effect of operating conditions on TiO2 nanoparticle synthesis using the TTIP precursor, and premixed flat flame burner which is suitable to maintain a uniform temperature zone. To investigate particle characteristics of the combustion synthesis method, TEM and XRD data were analyzed. The results show that the equivalent ratio has a more dominant effect on the size of TiO2 nanoparticles in the initial stage. The downstream from the burner, the residence time in the high-temperature region is dominant in the growth of nanoparticles. From crystalline analysis, the proportion ratio of the anatase crystal phase of TiO2 nanoparticles is increased as the equivalence ratio becomes leaner. And as the TTIP concentration becomes higher, the proportion of anatase crystal structure is decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

W a :

Mass fraction of anatase phase

I r :

Rutile phase diffracted intensities of main peak

I a :

Anatase phase diffracted intensities of main peak

References

  1. H. Lund, Renewable energy strategies for sustainable development, Energy, 32(6) (2007) 789–803.

    Article  Google Scholar 

  2. P. Nikolaidis and A. Poulikkas, A comparative overview of hydrogen production processes, Renewable and Sustainable Energy Reviews, 67 (2017) 597–611.

    Article  Google Scholar 

  3. G. Marbán and T. Valdés-Solís, Towards the hydrogen economy?, Int. J. of Hydrogen Energy, 32(12) (2007) 1625–1637.

    Article  Google Scholar 

  4. N. Lior, Advanced energy conversion to power, Energy Conversion and Management, 38(10–13) (1997) 941–955.

    Article  Google Scholar 

  5. N. H. Afgan and M. G. Carvalho, Sustainability assessment of hydrogen energy systems, Int. J. of Hydrogen Energy, 29(13) (2004) 1327–1342.

    Article  Google Scholar 

  6. S. Dunn, Hydrogen future: toward sustainable energy development, Int. J. of Hydrogen Energy, 27(3) (2003) 235–264.

    Article  Google Scholar 

  7. M. Deluchi, Hydrogen vehicles: an evaluation of fuel storage, performance, safety, environmental impacts, and cost, Int. J. of Hydrogen Energy, 14(2) (1989) 81–130.

    Article  Google Scholar 

  8. F. A. Hazzim and W. M. A. Wan Daud, Hydrogen production by methane decomposition: a review, Int. J. of Hydrogen Energy, 35(5) (2010) 1160–1190.

    Google Scholar 

  9. S. Y. Tee, K. Y. Win, W. S. Teo, L. D. Koh, S. Liu, C. P. Teng and M. Y. Han, Recent progress in energy — driven water splitting, Advance Science, 4(5) (2017) 1–24.

    Google Scholar 

  10. A. Fujishima and K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238(5358) (1972) 37–38.

    Article  Google Scholar 

  11. G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R. C. Fitzmorris, C. Wang, J. Z. Zhang and Y. Li, Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting, Nano letters, 11(7) (2011) 3026–3033.

    Article  Google Scholar 

  12. J. H. Park and O. O. Park, Photoelectrochemical water splitting at titanium dioxide nanotubes coated with tungsten trioxide, Applied Phy. Letters, 89(16) (2006) 163106–163109.

    Article  Google Scholar 

  13. S. T. Kochuveedu, Photocatalytic and photoelectrochemical water splitting on TiO2 via photosensitization, J. of Nanomaterials (2016) 1–12.

  14. A. Galińska and J. Walendziewski, Photocatalytic water splitting over pt-tio2 in the presence of sacrificial reagents, Energy Fuels, 19(3) (2005) 1143–1147.

    Article  Google Scholar 

  15. Y. X. Li, G. X. Lu and S. B. Li, Photocatalytic production of hydrogen in single component and mixture systems of electron donors and monitoring adsorption of donors by in situ infrared spectroscopy, Chemosphere, 52(5) (2003) 843–850.

    Article  Google Scholar 

  16. A. Kudo and Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chemical Society Reviews, 38(1) (2009) 253–278.

    Article  Google Scholar 

  17. C. H. Liao, C. W. Huang and J. C. S. Wu, Hydrogen production from semiconductor-based photocatalysis via water splitting, Catalyst, 2(4) (2012) 490–516.

    Article  Google Scholar 

  18. M. M. Khan, S. A. Ansari, D. Pradhan, M. O. Ansari, D. H. Han, J. T. Lee and M. H. Cho, Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies, J. of Mater. Chem A, 2 (2014) 637–644.

    Article  Google Scholar 

  19. M. E. Khan, M. M. Khan, B. K. Min and M. H. Cho, Microbial fuel cell assisted band gap narrowed TiO2 for visible lightinduced photocatalytic activities and power generation, Scientific Reports, 8 (2018) 1723.

    Article  Google Scholar 

  20. A. P. Singh, S. Kumari, R. Shrivastav, S. Dass and V. R. Satsangi, Iron doped nanostructured TiO2 for photoelectrochemical generation of hydrogen, Int. J. of Hydrogen Energy, 33(20) (2008) 5363–5368.

    Article  Google Scholar 

  21. S. Palmas, A. D. Pozzo, M. Mascia, A. Vacca, A. Ardu, R. Matarrese and I. Nova, Effect of the preparation conditions on the performance of TiO2 nanotube arrays obtained by electrochemical oxidation, Int. J. of Hydrogen Energy, 36(15) (2011) 8894–8901.

    Article  Google Scholar 

  22. S. K. Saraswat, D. D. Rodene and R. B. Gupta, Recent advancements in semiconductor materials for photoelectrochemical water splitting for hydrogen production using visible light, Renewable and Sustainable Energy Reviews, 89 (2018) 228–248.

    Article  Google Scholar 

  23. W. Y. Teoh, A perspective on the flame spray synthesis of photocatalyst nanoparticles, Materials, 6(8) (2013) 3194–3212.

    Article  Google Scholar 

  24. K. Rajeshwar and N. R. de Tacconi, Solution combustion synthesis of oxide semiconductors for solar energy conversion and environmental remediation, Chem. Society Reviews, 38 (2009) 1984–1998.

    Article  Google Scholar 

  25. A. Maury-Ramirez, J. P. Nikkanen, M. Honkanen, K. Demeestere, E. Levänen and N. De Belie, TiO2 coatings synthesized by liquid flame spray and low temperature sol-gel technologies on autoclaved aerated concrete for air-purifying purposes, Materials Characterization, 87 (2014) 74–85.

    Article  Google Scholar 

  26. S. E. Pratsinis, Aerosol-based technologies in nanoscale manufacturing: from functional materials to devices through core chemical engineering, AlChE Journal, 56(12) (2010) 3028–3035.

    Article  Google Scholar 

  27. S. E. Pratsinis, Flame aerosol synthesis of ceramic powders, Progress in Energy and Combustion Science, 24(3) (1998) 197–219.

    Article  Google Scholar 

  28. S. H. Ehrman, S. K. Friedlander and M. R. Zachariah, Characteristics of SiO2/TiO2 nanocomposite particles formed in a premixed flat flame, J. of Aerosol Science, 29(5–6) (1998) 687–706.

    Article  Google Scholar 

  29. J. Wang, S. Li, W. Yan, S. D. Tse and Q. Yao, Synthesis of TiO2 nanoparticles by premixed stagnation swirl flames, Proceedings of the Combustion Institute, 33(2) (2011) 1925–1932.

    Article  Google Scholar 

  30. M. S. Wooldridge, Gas-phase combustion synthesis of particles, Progress in Energy and Combustion Science, 24(1) (1998) 63–87.

    Article  Google Scholar 

  31. S. Li, Y. Ren, P. Biswas and S. D. Tse, Flame aerosol synthesis of nanostructured materials and functional devices: Processing, modeling, and diagnostics, Progress in Energy and Combustion Science, 55 (2016) 1–59.

    Article  Google Scholar 

  32. M. Košević, S. Stopic, A. Bulan, J. Kintrup, R. Weber, J. Stevanovic, V. Panić and B. Friedrich, A continuous process for the ultrasonic spray pyrolysis synthesis of RuO2/TiO2 particles and their application as a coating of activated titanium anode, Advanced Powder Technology, 28(1) (2017) 43–49.

    Article  Google Scholar 

  33. S. K. Parayil, H. S. Kibombo, C. M. Wu, R. Peng, J. Baltrusaitis and R. T. Koodali, Enhanced photocatalytic water splitting activity of carbon-modified TiO2 composite materials synthesized by a green synthetic approach, Int. J. of Hydrogen Energy, 37(10) (2012) 8257–8267.

    Article  Google Scholar 

  34. P. J. Holliman, D. K. Muslem, E. W. Jones, A. Connell, M. L. Davies, C. Charbonneau, M. J. Carnie and D. A. Worsley, Low temperature sintering of binder-containing TiO2/metal peroxide pastes for dye-sensitized solar cells, J. Mater. Chem. A, 2 (2014) 11134–11143.

    Article  Google Scholar 

  35. Y. Zhang, S. Li, Y. Len, Q. Yao and S. D. Tse, A new diagnostic for volume fraction measurement of metal-oxide nanoparticles in flame using phase-selective laser-induced breakdown spectroscopy, Proceedings of Combustion Institute, 35(3) (2015) 3681–3688.

    Article  Google Scholar 

  36. G. Jeantelot, S. O. Chikh, J. Sofack-Kreutzer, E. Abou-Hamad, D. H. Anjum, S. Lopatin, M. Harb, L. Cavallo and J. M. Basset, Morphology control of anatase TiO2 for well-defined surface chemistry, Phys. Chem. Chem. Phys, 20 (2018) 14362–14373.

    Article  Google Scholar 

  37. K. Thamaphat, P. Limsuwan and B. Ngotawornchai, Phase characterization of TiO2 powder by XRD and TEM, Kasetsart J. Nat. Sci, 42(5) (2008) 357–361.

    Google Scholar 

  38. J. He, Q. Z. Cai, Y. G. Ji, H. H. Luo, D. J. Li and B. Yu, Influence of fluorine on the structure and photocatalytic activity of TiO2 film prepared in tungstate-electrolyte via micro-arc oxidation, J. of Alloys and Compounds, 482(1–2) (2009) 476–481.

    Article  Google Scholar 

  39. H. Zhangand and J. F. Banfield, Thermodynamic analysis of phase stability of nanocrystalline titania, J. of Materials Chemistry, 8(9) (1998) 2073–2076.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Research Program supported by the Incheon National University Research Grant in 2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Soon Hwang.

Additional information

Ho Yeon Lee studied mechanical engineering and received his B.S. and Ph.D. from Mechanical Engineering from Incheon National University. His current research interests are MILD combustion using gas phase fuel, and flame synthesis.

Sang Soon Hwang studied aeronautical engineering and received his Ph.D. from Seoul National University in 1989, respectively. Since 1993, he is a Professor at the Incheon National University. His current research interests are MILD combustion of gas (methane, hedrogen) and liquidphase fuel for gas turbine combustor either industrial combustor also nano particle flame synthesis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, HY., Hwang, SS. High temperature synthesis of TiO2 nanoparticles as a photochemical catalyst for hydrogen generation using premixed flame burner. J Mech Sci Technol 37, 2657–2665 (2023). https://doi.org/10.1007/s12206-023-0439-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-023-0439-0

Keywords

Navigation