Skip to main content
Log in

Numerical analysis with experimental validation for thermal performance of flat plate solar water heater using CuO/distilled water nanofluid in closed loop

  • Original Article
  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

The thermal performance of a solar flat plate collector incorporating CuO nanofluid as a working medium was examined in the present study. The solar collector with two riser tubes was studied experimentally and the results compared with the numerical outcomes predicted using commercially available Ansys 19.0 software. The solar water heater was examined for water and CuO nanofluid with 0.2 wt% and 0.4 wt% for two different volume flow rates of 0.5 and 1 lit/min. The present study claims that the instantaneous thermal efficiency for 0.2 wt% and 0.4 wt% increased by 12.01 % and 7.56 %, respectively, compared to water as a working medium. The effect of CuO/distilled water nanofluid on the collector's efficiency was also numerically studied using a two-phase CFD model. It is observed that the CFD and experimental results show good agreement with each other, with a maximum error of 5.84 % and 4.29 % for the nanofluid and water as working fluids, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Q :

Useful heat gain

w :

Mass flow rate of working fluid

T o :

Outlet temperature

T i :

Inlet temperature

A :

Area of collector

F R :

Heat removal factor

G T :

Global radiation

U L :

Overall heat loss coefficient

T amb :

Ambient air temperature

η i :

Instantaneous efficiency

τα :

Product of absorptivity and transmissivity

R 2 :

Correlation coefficient

u :

Uncertainty parameter

o :

Outlet

i :

Inlet

amb :

Ambient

w :

Working fluid

W :

Wind

η O :

Overall efficiency

References

  1. W. Yu, D. M. France, J. L. Routbort and S. U. S. Choi, Review and comparison of nanofluid thermal conductivity and heat transfer enhancements, Heat Transf. Eng., 29 (2008) 432–460.

    Article  Google Scholar 

  2. D. Zhu et al., Dispersion behavior and thermal conductivity characteristics of Al2O3-H2O nanofluids, Curr. Appl. Phys., 9 (2009) 131–139.

    Article  Google Scholar 

  3. H. J. Kim, S. H. Lee, J. H. Lee and S. P. Jang, Effect of particle shape on suspension stability and thermal conductivities of water-based bohemite alumina nanofluids, Energy, 90 (2015) 1290–1297.

    Article  Google Scholar 

  4. J. Hong and D. Kim, Effects of aggregation on the thermal conductivity of alumina/water nanofluids, Thermochim. Acta, 542 (2012) 28–32.

    Article  Google Scholar 

  5. E. Natarajan and R. Sathish, Role of nanofluids in solar water heater, Int. J. Adv. Manuf. Technol., (2009) https://doi.org/10.1007/s00170-008-1876-8.

  6. S. K. Verma, A. K. Tiwari and D. S. Chauhan, Experimental evaluation of flat plate solar collector using nanofluids, Energy Convers. Manag., 13 (2017) 103–115.

    Article  Google Scholar 

  7. H. K. Gupta, G. D. Agrawal and J. Mathur, Investigations for effect of Al2O3−H2O nanofluid flow rate on the efficiency of direct absorption solar collector, Case Stud. Therm. Eng., 5 (2015) 70–78.

    Article  Google Scholar 

  8. T. P. Otanicar and J. S. Golden, Comparative environmental and economic analysis of conventional and nanofluid solar hot water technologies, Environ. Sci. Technol., 43 (2009) 6082–6087.

    Article  Google Scholar 

  9. S. Salavati Meibodi, A. Kianifar, H. Niazmand, O. Mahian and S. Wongwises, Experimental investigation on the thermal efficiency and performance characteristics of a flat plate solar collector using SiO2/EG-water nanofluids, Int. Commun. Heat Mass Transf., 65 (2015) 71–75.

    Article  Google Scholar 

  10. Z. Said, M. H. Sajid, M. A. Alim, R. Saidur and N. A. Rahim, Experimental investigation of the thermophysical properties of AL2O3-nanofluid and its effect on a flat plate solar collector, Int. Commun. Heat Mass Transf., 48 (2013) 99–107.

    Article  Google Scholar 

  11. M. Mercan and A. Yurddaş, Numerical analysis of evacuated tube solar collectors using nanofluids, Sol. Energy, 191 (2019) 167–179.

    Article  Google Scholar 

  12. O. Mahian, A. Kianifar, S. A. Kalogirou, I. Pop and S. Wongwises, A review of the applications of nanofluids in solar energy, Int. J. Heat Mass Transf., 57 (2013) 582–594.

    Article  Google Scholar 

  13. Q. He, S. Zeng and S. Wang, Experimental investigation on the efficiency of flat-plate solar collectors with nanofluids, Appl. Therm. Eng., 88 (2014) 165–171.

    Article  Google Scholar 

  14. D. G. Gunjo, P. Mahanta and P. S. Robi, CFD and experimental investigation of flat plate solar water heating system under steady state condition, Renew. Energy, 106 (2017) 24–36.

    Article  Google Scholar 

  15. T. Yousefi, F. Veysi, E. Shojaeizadeh and S. Zinadini, An experimental investigation on the effect of Al2O3−H2O nanofluid on the efficiency of flat-plate solar collectors, Renew. Energy, 39 (2012) 293–298.

    Article  Google Scholar 

  16. A. A. Hawwash, A. K. Abdel Rahman, S. A. Nada and S. Ookawara, Numerical investigation and experimental verification of performance enhancement of flat plate solar collector using nanofluids, Appl. Therm. Eng., 130 (2018) 363–374.

    Article  Google Scholar 

  17. A. A. Abdelfattah et al., Thermal performance augmentation of a semi-circular cylinder in crossflow using longitudinal fins, Int. Commun. Heat Mass Transf., 125 (2021) 105159.

    Article  Google Scholar 

  18. M. L. Elsayed, M. A. Abdelatief, S. A. Ahmed, M. S. Emeara and W. M. Elwan, Thermal design evaluation of ribbed/grooved tubes: an entropy and exergy approach, Int. Commun. Heat Mass Transf., 120 (2021) 105048.

    Article  Google Scholar 

  19. ASHRAE, Methods of Testing To Determine The Thermal Performance of Solar Collectors, ASHRAE Standard 93–1986, ASHRAE, Atlanta, USA (1985).

    Google Scholar 

  20. D. R. Clary and G. Mills, Preparation and thermal properties of CuO particles, J. Phys. Chem. C, 115 (2011) 1767–1775.

    Article  Google Scholar 

  21. M. A. Abdelatief, A. A. Zamel and S. A. Ahmed, Elliptic tube free convection augmentation: an experimental and ANN numerical approach, Int. Commun. Heat Mass Transf., 108 (2019) 104296.

    Article  Google Scholar 

  22. M. A. Abdelatief and M. A. Omara, Free convection experimental study inside square tube with inner roughened surface at various inclination angles, Int. J. Therm. Sci., 144 (2019) 11–20.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are highly thankful for the Department of Mechanical Engineering, NIT Jamshedpur for helping make this research work completed successfully.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helal Ahmad Farhan.

Additional information

Helal Ahmad Farhan is research scholar at NIT Jamshedpur India who completed Master’s from NIT Jamshedpur. His research area is nanofluid application for solar thermal applications.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farhan, H.A., Nayak, S., Sanjay et al. Numerical analysis with experimental validation for thermal performance of flat plate solar water heater using CuO/distilled water nanofluid in closed loop. J Mech Sci Technol 37, 2649–2656 (2023). https://doi.org/10.1007/s12206-023-0438-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-023-0438-1

Keywords

Navigation