Skip to main content
Log in

A nonlinear friction-cohesive model for characterizing mode II fracture of laminated composites

  • Original Article
  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

In this paper, the Coulomb friction is incorporated into the exponential cohesive law, so a nonlinear friction-cohesive model combining sliding friction and interfacial debonding is developed to characterize the mechanical responses of mode II fracture. This model can well simulate the load-displacement curve of ENF test, after properly calibrating the parameters through the experimental data available in the literature. Then, a parametric study to investigate the effects of interfacial parameters on the load-displacement curves of ENF test has been carried out. The results show that, compared with the bi-linear cohesive model and exponential cohesive model, the proposed model is closer to the experimental data. Friction parameters will affect the initial delamination stage and stable delamination stage of ENF test, and interfacial characteristic lengths and interfacial shear strength will affect the peak load of ENF test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. D. Nian, Q. Y. Li, Q. Xu and S. X Qu, A cohesive zone model incorporating a Coulomb friction law for fiber reinforced composites, Composites Science and Technology, 157 (2018) 195–201.

    Article  Google Scholar 

  2. Q. Xu, W. M. Tao, S. X. Qu and Q. D. Yang, A cohesive zone model for the elevated temperature interfacial debonding and frictional sliding behavior, Composites Science and Technology, 110 (2015) 45–52.

    Article  Google Scholar 

  3. Z. X. Su and F.D. Wu, Simulation for laminate’s delamination under out-of-plane impact with modification of interface friction effect, Applied Composite Materials, 26 (4) (2019) 1299–1309.

    Article  Google Scholar 

  4. D. S. Dugdale, Yielding of steel sheets containing slits, Journal of the Mechanics and Physics of Solids, 8 (1960) 100–104.

    Article  Google Scholar 

  5. G. I. Barenblatt, The mathematical theory of equilibrium cracks in brittle fracture, Advances in Applied Mechanics, 7 (1962) 55–129.

    Article  MathSciNet  Google Scholar 

  6. Y. C. Duan, X. Xie, T. Zou and T. T. Wang, Mechanical response of CFRP laminates subjected to low-velocity oblique impact, Applied Composite Materials, 29 (3) (2022) 1105–1124.

    Article  Google Scholar 

  7. N. Kumar, A. Rajagopal and M. Pandey, A rate independent cohesive zone model for modeling failure in quasi-brittle materials, Mechanics of Advanced Materials and Structures, 22 (2015) 681–696.

    Article  Google Scholar 

  8. S. Dixit, V. Chaudhari and D. M. Kulkarni, Mode-I fracture investigations of pressure vessel steels: experimental and simulation study, Journal of Materials Engineering and Performance, 29 (2020) 7179–7187.

    Article  Google Scholar 

  9. P. Gupta and N. Yedla, Dislocation and structural studies at metal-metallic glass interface at low temperature, Journal of Materials Engineering and Performance, 26 (2017) 5694–5704.

    Article  Google Scholar 

  10. N. Lubna and G. Newaz, Analysis of titanium-coated glass and imidex (PI) laser bonded samples, Journal of Materials Engineering and Performance, 21 (2012) 266–270.

    Article  Google Scholar 

  11. P. Z. Qiao and Y. Chen, Cohesive fracture simulation and failure modes of FRP-concrete bonded interfaces, Theoretical and Applied Fracture Mechanics, 49 (2008) 213–225.

    Article  Google Scholar 

  12. R. Y. Li, Z. H. Xu, X. C. Zou, C. X. Hu and X. D. He, A frictional cohesive zone model for characterizing transverse compression responses of unidirectional fiber-reinforced polymer composites, Mechanics of Advanced Materials and Structures (2022).

  13. W. G. Jiang, S. R. Hallett, B. G. Green and M. R. Wisnom, A concise interface constitutive law for analysis of delamination and splitting in composite materials and its application to scaled notched tensile specimens, International Journal for Numerical Methods in Engineering, 69 (2007) 1982–1995.

    Article  MATH  Google Scholar 

  14. M. L. Benzeggagh and M. Kenane, Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus, Composites Science and Technology, 56 (1996) 439–449.

    Article  Google Scholar 

  15. S. H. Yin, Y. Gong, W. C. Li, L. B. Zhao, J. Y. Zhang and N. Hu, A novel four-linear cohesive law for the delamination simulation in composite DCB laminates, Composites Part B: Engineering, 180 (2020) 107526.

    Article  Google Scholar 

  16. J. R. Ye, Y. Gong, J. N. Tao, T. C. Cao, L. B. Zhao, J. Y. Zhang and N. Hu, Efficiently determining the R-curve and bridging traction-separation relation of mode I delamination in a simple way, Composite Structures, 288 (2022) 115388.

    Article  Google Scholar 

  17. Y. Gong, X. J. Chen, J. Tao, L. B. Zhao, J. Y. Zhang and N. Hu, A simple procedure for determining the mode I bridging stress of composite DCB laminates without measuring the crack opening displacement, Composite Structures, 243 (2020) 112147.

    Article  Google Scholar 

  18. L. Snozzi and J. F. Molinari, A cohesive element model for mixed mode loading with frictional contact capability, International Journal for Numerical Methods in Engineering, 93 (2013) 510–526.

    Article  MathSciNet  MATH  Google Scholar 

  19. V. Venzal, S. Morel, T. Parent and F. Dubois, Frictional cohesive zone model for quasi-brittle fracture: mixed-mode and coupling between cohesive and frictional behaviors, International Journal of Solids and Structures, 198 (2020) 17–30.

    Article  Google Scholar 

  20. Z. M. Zou and H. Lee, A cohesive zone model taking account of the effect of through-thickness compression, Composites Part A: Applied Science and Manufacturing, 98 (2017) 90–98.

    Article  Google Scholar 

  21. M. S. Goodarzi and H. Hosseini-Toudeshky, Viscoelastic-damage interface model formulation with friction to simulate the delamination growth in mode II shear, Mechanics of Time-Dependent Materials, 21 (2017) 535–548.

    Article  Google Scholar 

  22. R. Vodicka, E. Kormanikova and F. Ksinan, Interfacial debonds of layered anisotropic materials using a quasi-static interface damage model with Coulomb friction, International Journal of Fracture, 221 (2018) 163–182.

    Article  Google Scholar 

  23. L. A. Carlsson, J. W. Gillespie and R. B. Pipes, On the analysis and design of the end notched flexure (ENF) specimen for Mode II testing, Journal of Composite Materials, 20 (1986) 594–604.

    Article  Google Scholar 

  24. J. H. Rose, J. Ferrante and J. R. Smith, Universal binding energy curves for metals and bimetallic interfaces, Physical Review Letters, 47 (1981) 675–678.

    Article  Google Scholar 

  25. X. P. Xu and A. Needleman, Numerical simulations of fast crack growth in brittle solids, Journal of the Mechanics and Physics of Solids, 42 (1994) 1397–1434.

    Article  MATH  Google Scholar 

  26. J. P. McGarry, E. O. Mairtín, G. Parry and G. E. Beltz, Potential-based and non-potential based cohesive zone formulations under mixed-mode separation and over-closure. Part I: theoretical analysis, Journal of the Mechanics and Physics of Solids, 63 (2014) 336–362.

    Article  Google Scholar 

  27. D. W. Spring and G. H. Paulino, Computational homogenization of the debonding of particle reinforced composites: the role of interphases in interfaces, Computational Materials Science, 109 (2015) 209–224.

    Article  Google Scholar 

  28. J. L. Chaboche, R. Girard and A. Schaff, Numerical analysis of composite systems by using interphase/interface models, Computational Mechanics, 20 (1997) 3–11.

    Article  MATH  Google Scholar 

  29. G. Alfano and E. Sacco, Combining interface damage and friction in a cohesive-zone model, International Journal for Numerical Methods in Engineering, 68 (2006) 542–582.

    Article  MathSciNet  MATH  Google Scholar 

  30. Z. M. Zou and M. Hameed, Combining interface damage and friction in cohesive interface models using an energy based approach, Composites Part A: Applied Science and Manufacturing, 112 (2018) 290–298.

    Article  Google Scholar 

  31. Z. R. Huang, D. S. Huang, Y. H. Chui and Z. F. Chen, A bilinear cohesive law-based model for mode II fracture analysis: application to ENF test for unidirectional fibrous composites. Engineering Fracture Mechanics, 213 (2019) 131–141.

    Article  Google Scholar 

  32. J. Schon, Coefficient of friction of composite delamination surfaces, Wear, 237 (2000) 77–89.

    Article  Google Scholar 

  33. P. F. Liu, X. Q. Peng and Z. Y. Guo, A viscoelastic cohesive/friction coupled model for delamination analysis of composite laminates, Theoretical and Applied Fracture Mechanics, 103 (2019) 102263.

    Article  Google Scholar 

  34. P. F. Liu and M. M. Islam, A nonlinear cohesive model for mixed-mode delamination of composite laminates, Composite Structures, 106 (2013) 47–56.

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by National Key Research and Development Program of China (Grant No. 2018YFA0702802), National Natural Science Foundation of China (Grant No. 12072095), Science Foundation of the National Key Laboratory of Science and Technology on Advanced Composites in Special Environments (Grant No. JCKYS2020603C004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chaocan Cai or Zhonghai Xu.

Additional information

Zhonghai Xu received Ph.D. degree in Jilin University, Jilin, China, in 2008. Now he is a Professor and Ph.D. supervisor in Center for Composite Materials and Structures, School of Aerospace, Harbin Institute of Technology. He is mainly engaged in the research of composite structure feature sensitivity analysis, advanced composite structure design, damage failure analysis and evaluation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Cai, C., Xu, Z. et al. A nonlinear friction-cohesive model for characterizing mode II fracture of laminated composites. J Mech Sci Technol 37, 2519–2526 (2023). https://doi.org/10.1007/s12206-023-0427-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-023-0427-4

Keywords

Navigation