Skip to main content
Log in

Anisotropy evolution of wide magnesium alloy foils during continuous electroplastic rolling

  • Original Article
  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

Anisotropy or brittleness poses an obstacle to the rolling of wide magnesium alloy foils, particularly those with a thickness of 1.0 mm. To address this problem, a special electroplastic rolling (EPR) process was developed to provide a better method than traditional isothermal heat treatment. Actual measured results showed that the pulse current with high energy could rapidly adjust high brittleness and severe anisotropy. This condition was helpful in the plasticity and rollability of wide magnesium alloy foils during continuous EPR process. Finally, a 0.13 mm-thick magnesium alloy foil was successfully rolled through continuous EPR processes without any intermediate annealing or reheating in the furnace. Evidently, the developed method contributed to the best matching conditions between the pulse current and deformation parameters along different directions. Therefore, EPR is a promising technology for changing the anisotropy or brittleness of wide magnesium alloy foils online.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

T sta :

Steady-state temperature

je :

Equivalent current density

σ NC :

Stress with the pulse current

σ PC :

Isothermal stress without the pulse current

σ sp :

Flow stress with the pulse current

ε :

Strain

\(\dot{\varepsilon}\) :

Strain rate

T :

Deformation temperature

j p :

Peak current density

σ 00 :

Initial yield strength

B :

Material hardening coefficient

N :

Hardening index

C :

Coefficient of strain rate

ε p :

Equivalent plastic strain

\(\dot{\tilde{\varepsilon}}\) :

Dimensionless plastic strain rate

σ sT :

Isothermal yield strength

σ sJ :

Yield strength with electric pulse

References

  1. J. H. Lee, S. W. Lee and S. H. Park, Microstructural characteristics of magnesium alloy sheets subjected to high-speed rolling and their rolling temperature dependence, Journal of Materials Research and Technology, 8(3) (2019) 3167–3174.

    Article  Google Scholar 

  2. C. Zhi, L. Ma, Q. Huang, Z. Huang and J. Lin, Improvement of magnesium alloy edge cracks by multi-cross rolling, Journal of Materials Processing Tech., 255 (2018) 333–339.

    Article  Google Scholar 

  3. Z. Wu and W. A. Curtin, Brittle and ductile crack-tip behavior in magnesium, Acta Materialia, 88 (2015) 1–12.

    Article  Google Scholar 

  4. O. V. Antonova, A. Y. Volkov, B. I. Kamenetskii and D. A. Komkova, Microstructure and mechanical properties of thin magnesium plates and foils obtained by lateral extrusion and rolling at room temperature, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 651 (2016) 8–17.

    Article  Google Scholar 

  5. Z. Chen, W. Xia, Y. Chen and D. Fu Dingfa, Texture and anisotropy in magnesium alloys, The Chinese Journal of Nonferrous Metals, 15(1) (2005) 1–11.

    Google Scholar 

  6. J. Wang, Y. Chen, Z. Chen, J. Llorca and X. Zeng, Deformation mechanisms of Mg-Ca-Zn alloys studied by means of micropillar compression tests, Acta Materialia, 217 (2021) 117151.

    Article  Google Scholar 

  7. B.-Y. Liu, F. Liu, N. Yang, X.-B. Zhai, L. Zhang, Y. Zhang, Y. Yang, B. Li, J. Li, E. Ma, J.-F. Nie and Z.-W. Shan, Large plasticity in magnesium mediated by pyramidal dislocations, Science, 365(6448) (2019) 73–75, Doi: 10.1126@science.aaw2843.

    Article  Google Scholar 

  8. C. Yan, Y. Xin, X.-B. Chen, D. Xu, P. K. Chu, C. Liu, B. Guan, X. Huang and Q. Liu, Evading strength-corrosion trade off in Mg alloys via dense ultrafine twins, Nature Communications (2021) https://doi.org/10.1038/s41467-021-24939-3.

  9. S. Kondo, T. Mitsuma, N. Shibata and Y. Ikuhara, Direct observation of individual dislocation interaction processes with grain boundaries, Science Advances, 2 (11) (2016) DOI:https://doi.org/10.1126/sciadv.1501926.

  10. J. Sun, L. Jin, J. Dong, F. Wang, S. Dong, W. Ding and A. A. Luo, Towards high ductility in magnesium alloys -the role of intergranular deformation, International Journal of Plasticity, 123 (2019) 121–132.

    Article  Google Scholar 

  11. J. H. Lee, J. U. Lee, S.-H. Kim, S. W. Song, C. S. Lee and S. H. Park, Dynamic recrystallization behavior and microstructural evolution of Mg alloy AZ31 through high-speed rolling, Journal of Materials Science and Technology, 34(10) (2018) 1747–1755.

    Article  Google Scholar 

  12. H. S. Huhu, X. Zhou, Z. Yang and H. Ye, Interactions between slip dislocations and twin boundaries in a Mg alloy, Journal of Chinese Electron Microscopy Society, 39(6) (2020) 663–672.

    Google Scholar 

  13. S. Jiang, T. Liu, L. Lu, W. Zeng and Z. Wang, Atomic motion in Mg-3AL-1Zn during twinning deformation, Scripta Materialia, 62(8) (2010) 556–559.

    Article  Google Scholar 

  14. X. R. Li et al., Effect of annealing on microstructure and mechanical anisotropy of AZ31 magnesium alloyd, Rare Metal Materials and Engineering, 49(1) (2020) 320–324.

    Google Scholar 

  15. W. Wang, Q. Miao, X. Chen, Y. Yu, W. Zhang, W. Chen and E. Wang, Critical rolling process parameters for dynamic recrystallization behavior of AZ31 magnesium alloy sheets, Materials, 11(10) (2018) 1–15.

    Article  Google Scholar 

  16. L. L. C. Catorceno, H. F. G. De Abreu and A. F. Padilha, Effects of cold and warm cross-rolling on microstructure and texture evolution of AZ31B magnesium alloy sheet, Journal of Magnesium and Alloys, 6(2) (2018) 121–133.

    Article  Google Scholar 

  17. G. Ben Hamu, D. Eliezer and L. Wagner, The relation between severe plastic deformation microstructure and corrosion behavior of AZ31 magnesium alloy, Journal of Alloys and Compounds, 468(1–2) (2009) 222–229.

    Article  Google Scholar 

  18. J. Su, M. Sanjari, A. S. H. Kabir, J. J. Jonas and S. Yue, Static recrystallization behavior of magnesium AZ31 Alloy subjected to high speed rolling, Materials Science and Engineering: A, 662 (2016) 412–425.

    Article  Google Scholar 

  19. F. Guo et al., Influence of rolling speed on microstructure and mechanical properties of AZ31 Mg alloy rolled by large strain hot rolling, Materials Science and Engineering A, 607 (2014) 383–389.

    Article  Google Scholar 

  20. B. Sułkowski, M. Janoska, G. Boczkal, R. Chulist, M. Mroczkowski and P. Pałka, The effect of severe plastic deformation on the Mg properties after CEC deformation, Journal of Magnesium and Alloys, 8(3) (2020) 761–768.

    Article  Google Scholar 

  21. F. Pan, B. Zeng, B. Jiang, A. Atrens and H. Dong, Deformation mechanism and microstructure evolution during on-line heating rolling of AZ31B Mg thin sheets, Materials Characterization, 124 (2017) 266–275.

    Article  Google Scholar 

  22. A. Chapuis and Q. Liu, Modeling strain rate sensitivity and high temperature deformation of Mg-3Al-1Zn alloy, Journal of Magnesium and Alloys, 7(3) (2019) 433–443.

    Article  Google Scholar 

  23. J. Wei, B. Feng, R. Ishikawa, T. Yokoi, K. Matsunaga, N. Shibata and Y. Ikuhara, Direct imaging of atomistic grain boundary migration, Nature Materials, 1 (2021) 1–6.

    Google Scholar 

  24. H.-D. Nguyen-Tran, H.-S. Oh, S.-T. Hong, H. N. Han, J. Cao, S.-H. Ahn and D.-M. Chun, A review of electrically-assisted manufacturing, International Journal of Precision Engineering and Manufacturing-Green Technology, 2(4) (2015) 365–376.

    Article  Google Scholar 

  25. Z. Xu, G. Tang, S. Tian, F. Ding and H. Tian, Research of electroplastic rolling of AZ31 Mg alloy strip, Journal of Materials Processing Technology, 182(1) (2007) 128–133.

    Article  Google Scholar 

  26. H. Liao, G. Tang, Y. Jiang, Q. Xu, S. Sun and J. Liu, Effect of thermo-electropulsing rolling on mechanical properties and microstructure of AZ31 magnesium alloy, Materials Science and Engineering A, 529 (2011) 138–142.

    Article  Google Scholar 

  27. J. Kuang, X. Li, R. Zhang, Y. Ye, A. A. Luo and G. Tang, Enhanced rollability of Mg-3Al-1Zn alloy by pulsed electric-current: a comparative study, Materials and Design, 100 (2016) 204–216.

    Article  Google Scholar 

  28. J. Kuang et al., Abnormal texture development in magnesium alloy Mg-3Al-1Zn during large strain electroplastic rolling: effect of pulsed electric current, International Journal of Plasticity, 87 (2016) 86–99.

    Article  Google Scholar 

  29. C. Xu, Y. Li and X. Rao, Effect of electropulsing rolling on mechanical properties and microstructure of AZ31 magnesium alloy, Transactions of Nonferrous Metals Society of China (24) (2014) 3777–3784.

  30. J. Kuang, X. Du, X. Li, Y. Yang, A. A. Luo and G. Tang, Athermal influence of pulsed electric current on the twinning behavior of Mg-3Al-1Zn alloy during rolling, Scripta Materialia, 114 (2016) 151–155.

    Article  Google Scholar 

  31. J. Tian et al., An effective rolling process of magnesium alloys for suppressing edge cracks: width-limited rolling, Journal of Magnesium and Alloys, 10 (2022) 2193–2207.

    Article  Google Scholar 

  32. X. Li, X. Li, S.-Z. Kure-Chu and G. Tang, A comparative study on the static recrystallization behavior of cold-rolled Mg-3Al-1Zn alloy stimulated by electropulse treatment and conventional heat treatment, Metall. Mater. Trans. A, 49(2018) (613–627).

    Article  Google Scholar 

  33. Y. Geng, J. Kuang, G. Tang, Z. Wang and Y. Yin, Application study of high energy pulse current in rolling of AZ31 magnesium alloy, Hot Working Technology, 46(3) (2017) 74–78.

    Google Scholar 

  34. X. Li, F. Wang, X. Li, G. Tang and J. Zhu, Improvement of formability of Mg-3Al-1Zn alloy strip by electroplastic-differential speed rolling, Materials Science and Engineering A, 618 (2014) 500–504.

    Article  Google Scholar 

  35. X. Li, F. Wang, X. Li, J. Zhu and G. Tang, Mg-3Al-1Zn alloy strips processed by electroplastic differential speed rolling, Material Science and Technology, 33(2) (2016) 215–219.

    Article  Google Scholar 

  36. X. Li, X. Li, Y. Ye, R. Zhang, S.-Z. Kure-Chu and G. Tang, Deformation mechanisms and recrystallization behavior of Mg-3Al-1Zn and Mg-1Gd alloys deformed by electroplastic-asymmetric rolling, Materials Science and Engineering A, 742 (2019) 722–733.

    Article  Google Scholar 

  37. R. F. Zhu et al., Effect of eletroplastic rolling on the ductility and superelesticity of TiNi shape memeory alloy, Materials and Design, 44 (2013) 606–611.

    Article  Google Scholar 

  38. A. Pandey, F. Kabirian, J.-H. Hwang, S.-H. Choi and A. S. Khan, Mechanical responses and deformation mechanisms of an AZ31 Mg alloy sheet under dynamic and simple shear deformations, International Journal of Plasticity, 68 (2015) 111–131.

    Article  Google Scholar 

  39. M.-J. Kim, H.-J. Jeong, J.-W. Park, S.-T. Hong and H. N. Han, Modified Johnson-Cook model incorporated with electroplasticity for uniaxial tension under a pulsed electric current, Metals and Materials International, 24(1) (2018) 42–50.

    Article  Google Scholar 

  40. H. Li, S. Yan, M. Zhan and X. Zhang, Eddy current induced dynamic deformation behaviors of aluminum alloy during emf: modeling and quantitative characterization, Journal of Materials Processing Technology, 263 (2019) 423–439.

    Article  Google Scholar 

  41. K. Hariharan, M. J. Kim, S.-T. Hong, D. Kim, J.-H. Song, M.-G. Lee and H. N. Han, Electroplastic behaviour in an aluminium alloy and dislocation density based modeling, Materials and Design, 124 (2017) 131–142.

    Article  Google Scholar 

  42. W. L. Chan, M. W. Fu and B. Yang, Experimental studies of the size effect affected microscale plastic deformation in micro upsetting process, Materials Science and Engineering A, 534 (2012) 374–383.

    Article  Google Scholar 

  43. B. Ye and B. He, Research progress of high strength magnesium alloy and its preparation process, Hot Working Technology, 48(24) (2019) 5–10.

    Google Scholar 

  44. X. Wang, C. Xu, Y. Li and B. Wang, Respective roles of the thermal and electromigration effect in AZ31 Mg alloy during low-frequency electropulsing tension, Journal of Alloys and Compounds, 846 (2020) 1–11.

    Article  Google Scholar 

  45. M. R. Barnett, A. Sullivan, N. Stanford, N. Ross and A. Beer, Texture selection mechanisms in uniaxially extruded magnesium alloys, Scripta Materialia, 63(7) (2010) 721–724.

    Article  Google Scholar 

  46. N. Dimitrov, Y. Liu and M. F. Horstemeyer, On the thermomechanical coupling of the Bammann plasticity-damage internal state variable model, Acta Mechanica, 230 (2019) 1855–1868.

    Article  MathSciNet  MATH  Google Scholar 

  47. N. K. Dimitrov, Y. Liu and M. F. Horstemeyer, Experimental observation and modeling of the electroplastic effect in nonferromagnetic ductile metals, Experimental Techniques, 45 (2021) 735–748.

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by Returned Overseas Scholar Foundation of Hebei Province (Grant No. C20210321) and the Natural Science Foundation of Hebei Province (Grant No. E2021203106).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lipo Yang.

Additional information

Lipo Yang is a Professor at the National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, Hebei Province, China. His research interests include special rolling processes, strip shape control, and new mill designs.

Hailong Zhang is a master’s student at the National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, Hebei Province, China. His research interests include the electroplastic rolling of magnesium alloy foil.

Gengliang Liu is a Ph.D. student at the National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, Hebei Province, China. His research interests include special rolling processes of magnesium alloy foil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Zhang, H. & Liu, G. Anisotropy evolution of wide magnesium alloy foils during continuous electroplastic rolling. J Mech Sci Technol 37, 1747–1759 (2023). https://doi.org/10.1007/s12206-023-0315-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-023-0315-y

Keywords

Navigation