Skip to main content
Log in

Nozzle-based precision patterning with micro-/nano fluidics integrated cantilevers

  • Original Article
  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

As the requirements of micro-/nano printing technologies are continuously increasing, direct writing technologies on a submicron scale are drawing attention. One of the promising methods is a nozzle-based precision patterning with atomic force microscopy (AFM), which has the advantages of high position controllability including nozzle-to-substrate distance feedback under a nanometer scale. It uses a fluidic channel and a dispensing nozzle integrated with a cantilever structure for deflection monitoring. In this paper, we introduce micro/nanofluidics integrated cantilevers for nozzle-based precision patterning in several considerations: 1) numerous fabrication strategies for nozzle-integrated fluidic cantilevers; 2) methods for liquid transport; 3) methods for pattern formation; and 4) applications with various printing materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. N. Deng, S. Wang, J. Ventrici De Souza, T. L. Kuhl and G. Y. Liu, New algorithm to enable construction and display of 3D structures from scanning probe microscopy images acquired layer-by-layer, Journal of Physical Chemistry A, 122(26) (2018) 5756–5763, https://doi.org/10.1021/acs.jpca.8b03417.

    Article  Google Scholar 

  2. W. Xu, X. Wang, N. Sandler, S. Willför and C. Xu, Three-dimensional printing of wood-derived biopolymers: a review focused on biomedical applications, ACS Sustain. Chem. Eng., 6(5) (2018) 5663–5680, https://doi.org/10.1021/acssuschemeng.7b03924.

    Article  Google Scholar 

  3. Z. Zhan, J. An, Y. Wei, V. T. Tran and H. Du, Inkjet-printed optoelectronics, Nanoscale, 9(3) (2017) 965–993, https://doi.org/10.1039/c6nr08220c.

    Article  Google Scholar 

  4. J. W. Boley et al., Shape-shifting structured lattices via multimaterial 4D printing, Proc. Natl. Acad. Sci., 116(42) 20856–20862 (2019) https://doi.org/10.1073/pnas.1908806116.

    Article  Google Scholar 

  5. A. Chortos, E. Hajiesmaili, J. Morales, D. R. Clarke and J. A. Lewis, 3D printing of interdigitated dielectric elastomer actuators, Adv. Funct. Mater., 11 (2019) 1907375, https://doi.org/10.1002/adfm.201907375.

    Google Scholar 

  6. Y. J. Kim, S. Y. Kim, J. S. Lee, J. Hwang and Y. J. Kim, Ondemand electrohydrodynamic jetting with meniscus control by a piezoelectric actuator for ultra-fine patterns, J. Micromech. Microeng, 19(10) (2009) 107001, https://doi.org/10.1088/0960-1317/19/10/107001.

    Article  Google Scholar 

  7. J. U. Park et al., High-resolution electrohydrodynamic jet printing, Nat. Mater., 6(10) (2007) 782–789, https://doi.org/10.1038/nmat1974.

    Article  Google Scholar 

  8. J. S. Lee et al., Design and evaluation of a silicon based multi-nozzle for addressable jetting using a controlled flow rate in electrohydrodynamic jet printing, Appl. Phys. Lett., 93(24) (2008) 1–4, https://doi.org/10.1063/1.3049609.

    Article  Google Scholar 

  9. J. Yang, B. Cho and J. Chung, Optimization of pulsed voltage waveform for electrohydrodynamic jetting on-demand, J. Mech. Sci. Technol., 32(8) (2018) 3775–3786, https://doi.org/10.1007/s12206-018-0730-7.

    Article  Google Scholar 

  10. U. Farooq, I. Khan, S. Ahmad, M. Abas, M. A. Zaib Khan and K. Rahman, Fabrication of PEDOT: PSS conductive patterns on photo paper substrate through electro-hydrodynamic jet printing process, Int. J. Lightweight Mater. Manuf., 2(4) (2019) 318–329, https://doi.org/10.1016/j.ijlmm.2019.06.002.

    Google Scholar 

  11. S. Maktabi and P. R. Chiarot, Electrohydrodynamic printing of organic polymeric resistors on flat and uneven surfaces, J. Appl. Phys., 120(8) (2016) 084903, https://doi.org/10.1063/1.4961421.

    Article  Google Scholar 

  12. A. Vyatskikh, S. Delalande, A. Kudo, X. Zhang, C. M. Portela and J. R. Greer, Additive manufacturing of 3D nano-architected metals, Nat. Commun., 9(1) (2018) 593, https://doi.org/10.1038/s41467-018-03071-9.

    Article  Google Scholar 

  13. J. Geerlings, E. Sarajlic, J. W. Berenschot, R. G. P. Sanders, L. Abelmann and N. R. Tas, Electrospray deposition from AFM probes with nanoscale apertures, Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (2014) 100–103, https://doi.org/10.1109/MEMSYS.2014.6765583.

  14. B. Zhang, B. Seong, J. Lee, V. Nguyen, D. Cho and D. Byun, One-step sub-micrometer-scale electrohydrodynamic inkjet three-dimensional printing technique with spontaneous nanoscale joule heating, ACS Appl. Mater. Interfaces, 9(35) (2017) 29965–29972, https://doi.org/10.1021/acsami.7b08375.

    Article  Google Scholar 

  15. W. Zou, H. Yu, P. Zhou and L. Liu, Tip-assisted electrohydrodynamic jet printing for high-resolution microdroplet deposition, Mater. Des., 166 (2019) 107609, https://doi.org/10.1016/j.matdes.2019.107609.

    Article  Google Scholar 

  16. W. Zou, H. Yu, P. Zhou, Y. Wen and L. Liu, Patterning micro-nano structures based on tip-assisted electrohydrodynamic jet printing, 8th Annual IEEE International Conference on Cyber Technology in Automation, Control and Intelligent Systems, CYBER (2018) 416–419, https://doi.org/10.1109/CYBER.2018.8688230.

  17. L. Zhang et al., Optimized fabrication of micropipette using laser micromachining process and application in functional electrical stimulation of muscle tissue, Microelectron. Eng., 103 (2013) 131–136, https://doi.org/10.1016/j.mee.2012.10.013.

    Article  Google Scholar 

  18. J. Ko, D. Lee, B. J. Lee, S. K. Kauh and J. Lee, Micropipette resonator enabling targeted aspiration and mass measurement of single particles and cells, ACS Sens., 4(12) (2019) 3275–3282, https://doi.org/10.1021/acssensors.9b01843.

    Article  Google Scholar 

  19. M. Chen et al., 3D nano printing of perovskites, Adv. Mater., 31(44) (2019) 1904073, https://doi.org/10.1002/adma.201904073.

    Article  Google Scholar 

  20. Y.-G. Park, H. S. An, J.-Y. Kim and J.-U. Park, High-resolution, reconfigurable printing of liquid metals with three-dimensional structures, Sci. Adv., 5(6) (2019) 1–9, https://doi.org/10.1126/sciadv.aaw2844.

    Article  Google Scholar 

  21. A. Reiser et al., Multi-metal electrohydrodynamic redox 3D printing at the submicron scale, Nat. Commun., 10(1) (2019) 1–8, https://doi.org/10.1038/s41467-019-09827-1.

    Article  MathSciNet  Google Scholar 

  22. D. Eliyahu, E. Gileadi, E. Galun and N. Eliaz, Atomic force microscope-based meniscus-confined three-dimensional electrodeposition, Adv. Mater. Technol., 5(2) (2020) 1–9, https://doi.org/10.1002/admt.201900827.

    Article  Google Scholar 

  23. S. An and W. Jhe, Fabrication and characterization of au nanoparticle-aggregated nanowires by using nanomeniscus-induced colloidal stacking method, Nanomicro Lett., 7(1) (2014) 27–34, https://doi.org/10.1007/s40820-014-0015-3.

    Google Scholar 

  24. R. D. Piner, J. Zhu, F. Xu, S. Hong and C. A. Mirkin, ‘Dip-pen’ nanolithography, Science, 283(5402) (1999) 661–663, https://doi.org/10.1126/science.283.5402.661.

    Article  Google Scholar 

  25. A. Meister et al., Nanoscale dispensing of liquids through cantilevered probes, Microelectron. Eng., 67 (2003) 644–650, https://doi.org/10.1016/S0167-9317(03)00126-6.

    Article  Google Scholar 

  26. S. Deladi et al., Fabrication of micromachined fountain pen with in situ characterization possibility of nanoscale surface modification, J. Micromech. Microeng, 15(3) (2005) 528–534, https://doi.org/10.1088/0960-1317/15/3/013.

    Article  Google Scholar 

  27. N. Moldovan, K. H. Kim and H. D. Espinosa, Design and fabrication of a novel microfluidic nanoprobe, J. Microelectromechanical Syst., 15(1) (2006) 204–213, https://doi.org/10.1109/JMEMS.2005.863701.

    Article  Google Scholar 

  28. K. H. Kim, N. Moldovan and H. D. Espinosa, A nanofountain probe with Sub-100 nm molecular writing resolution, Small, 1(6) (2005) 632–635, https://doi.org/10.1002/smll.200500027.

    Article  Google Scholar 

  29. R. M. Wu, L. S. Han and K. H. Mo, Optimization for an active fountain pen nanolithography device fabrication, J. Mech. Sci. Technol., 25(4) (2011) 987–993, https://doi.org/10.1007/s12206-011-0204-7.

    Article  Google Scholar 

  30. M. J. Lopez et al., Focused ion beam-assisted technology in sub-picolitre micro-dispenser fabrication, J. Micromech. Microeng, 18 (7) (2008) https://doi.org/10.1088/0960-1317/18/7/075021.

  31. H. H. Perez Garza, M. K. Ghatkesar and U. Staufer, Combined AFM—nanopipette cartridge system for actively dispensing femtolitre droplets, J. Microbio. Robot., 8(1) (2013) 33–40, https://doi.org/10.1007/s12213-013-0064-6.

    Article  Google Scholar 

  32. A. Meister et al., FluidFM: Combining atomic force microscopy and nanofluidics in a universal liquid delivery system for single cell applications and beyond, Nano Lett., 9(6) (2009) 2501–2507, https://doi.org/10.1021/nl901384x.

    Article  Google Scholar 

  33. A. Meister et al., Nanoscale dispensing in liquid environment of streptavidin on a biotin-functionalized surface using hollow atomic force microscopy probes, Microelectron. Eng., 86(4) (2009) 1481–1484, https://doi.org/10.1016/j.mee.2008.10.025.

    Article  Google Scholar 

  34. M. K. Ghatkesar, H. H. P. Garza and U. Staufer, Hollow AFM cantilever pipette, Microelectron. Eng., 124 (2014) 22–25, https://doi.org/10.1016/j.mee.2014.04.019.

    Article  Google Scholar 

  35. O. Guillaume-Gentil, E. Potthoff, D. Ossola, C. M. Franz, T. Zambelli and J. A. Vorholt, Force-controlled manipulation of single cells: from AFM to FluidFM, Trends Biotechnol., 32(7) (2014) 381–388, https://doi.org/10.1016/j.tibtech.2014.04.008.

    Article  Google Scholar 

  36. Á. G. Nagy, J. Kámán, R. Horváth and A. Bonyár, Spring constant and sensitivity calibration of FluidFM micropipette cantilevers for force spectroscopy measurements, Sci. Rep., 9(1) (2019) 1–11, https://doi.org/10.1038/s41598-019-46691-x.

    Google Scholar 

  37. P. Schön, J. Geerlings, N. Tas and E. Sarajlic, AFM cantilever with in situ renewable mercury microelectrode, Anal. Chem., 85(19) (2013) 8937–8942, https://doi.org/10.1021/ac400521p.

    Article  Google Scholar 

  38. V. Martinez et al., SU-8 hollow cantilevers for AFM cell adhesion studies, J. Micromech. Microeng., 26(5) (2016) 055006, https://doi.org/10.1088/0960-1317/26/5/055006.

    Article  Google Scholar 

  39. V. Martinez et al., Controlled single-cell deposition and patterning by highly flexible hollow cantilevers, Lab Chip, 16(9) (2016) 1663–1674, https://doi.org/10.1039/c5lc01466b.

    Article  Google Scholar 

  40. O. Guillaume-Gentil, E. Potthoff, D. Ossola, P. Dörig, T. Zambelli and J. A. Vorholt, Force-controlled fluidic injection into single cell nuclei, Small, 9(11) (2013) 1904–1907, https://doi.org/10.1002/smll.201202276.

    Article  Google Scholar 

  41. R. R. Grüter, J. Vörös and T. Zambelli, FluidFM as a lithography tool in liquid: Spatially controlled deposition of fluorescent nanoparticles, Nanoscale, 5(3) (2013) 1097–1104, https://doi.org/10.1039/c2nr33214k.

    Article  Google Scholar 

  42. N. Kato, T. Kawashima, T. Shibata, T. Mineta and E. Makino, Micromachining of a newly designed AFM probe integrated with hollow microneedle for cellular function analysis, Microelectron. Eng., 87(5) (2010) 1185–1189, https://doi.org/10.1016/jmee.2009.12.025.

    Article  Google Scholar 

  43. T. Shibata et al., Fabrication and characterization of bioprobe integrated with a hollow nanoneedle for novel AFM applications in cellular function analysis, Microelectron. Eng., 111 (2013) 325–331, https://doi.org/10.1016/j.mee.2013.02.051.

    Article  Google Scholar 

  44. H. J. Lee, Y. Son, J. Kim, C. J. Lee, E. S. Yoon and I. J. Cho, A multichannel neural probe with embedded microfluidic channels for simultaneous in vivo neural recording and drug delivery, Lab Chip, 15(6) (2015) 1590–1597, https://doi.org/10.1039/c4lc01321b.

    Article  Google Scholar 

  45. H. Kang, S. Hwang and J. Kwak, A hydrogel pen for electrochemical reaction and its applications for 3D printing, Nanoscale, 7(3) (2015) 994–1001, https://doi.org/10.1039/c4nr06041e.

    Article  Google Scholar 

  46. F. Huo, Z. Zheng, G. Zheng, L. R. Giam, H. Zhang and C. A. Mirkin, Polymer pen lithography, Science, 321(5896) (2008) 1658–1660, https://doi.org/10.1126/science.1162193.

    Article  Google Scholar 

  47. M. Soleymaniha and J. R. Felts, Design of a heated micro-cantilever optimized for thermo-capillary driven printing of molten polymer nanostructures, Int. J. Heat Mass Transf., 101 (2016) 166–174, https://doi.org/10.1016/j.ijheatmasstransfer.2016.04.063.

    Article  Google Scholar 

  48. M. Li, L. Liu and T. Zambelli, FluidFM for single-cell biophysics, Nano. Res., 15(2) (2022) 773–786, https://doi.org/10.1007/s12274-021-3573-y.

    Article  Google Scholar 

  49. L. Hirt, R. R. Grüter, T. Berthelot, R. Cornut, J. Vörös and T. Zambelli, Local surface modification via confined electrochemical deposition with FluidFM, RSC Adv., 5(103) (2015) 84517–84522, https://doi.org/10.1039/c5ra07239e.

    Article  Google Scholar 

  50. D. Ossola, L. Dorwling-Carter, H. Dermutz, P. Behr, J. Vörös and T. Zambelli, Simultaneous scanning ion conductance microscopy and atomic force microscopy with microchanneled cantilevers, Phys. Rev. Lett., 115(23) (2015) 1–5, https://doi.org/10.1103/PhysRevLett.115.238103.

    Article  Google Scholar 

  51. J. Wang and Z. Yin, SU-8 nano-nozzle fabrication for electrohydrodynamic jet printing using UV photolithography, Mater. Sci. Semicond Process, 84 (2018) 144–150, https://doi.org/10.1016/j.mssp.2018.05.028.

    Article  Google Scholar 

  52. E. J. Verlinden et al., Volume and concentration dosing in picolitres using a two-channel microfluidic AFM cantilever, Nanoscale, 12(18) (2020) 10292–10305, https://doi.org/10.1039/C9NR10494A.

    Article  Google Scholar 

  53. R. C. L. N. Kramer et al., Multiscale 3D-printing of microfluidic AFM cantilevers, Lab Chip, 20(2) (2020) 311–319, https://doi.org/10.1039/C9LC00668K.

    Article  Google Scholar 

  54. D. Saya, T. Leïchlé, J. B. Pourciel, C. Bergaud and L. Nicu, Collective fabrication of an in-plane silicon nanotip for parallel femtoliter droplet deposition, J. Micromech. Microeng., 17 (1) (2007) https://doi.org/10.1088/0960-1317/17/1/N01.

  55. T. S. Hug, T. Biss, N. F. de Rooij and U. Staufer, Generic fabrication technology for transparent and suspended microfluidic and nanofluidic channels, The 13th lnternational Conference on Solid-state Sensors, Actuators and Microsystems (2005) 1191–1194.

  56. D. K. Oh et al., Top-down nanofabrication approaches toward single-digit-nanometer scale structures, J. Mech. Sci. Technol., 35(3) (2021) 837–859, https://doi.org/10.1007/s12206-021-0243-7.

    Article  Google Scholar 

  57. R. van Oorschot, H. H. Perez Garza, R. J. S. Derks, U. Staufer and M. K. Ghatkesar, A microfluidic AFM cantilever-based dispensing and aspiration platform, EPJ Tech. Instrum., 2 (2015) 4, https://doi.org/10.1140/epjti/s40485-014-0012-4.

    Article  Google Scholar 

  58. I. H. Song and T. Park, Connector-free world-to-chip interconnection for microfluidic devices, Micromachines (Basel), 10 (3) (2019) https://doi.org/10.3390/mi10030166.

  59. D. Maillard, A. de Pastina, T. Larsen and L. G. Villanueva, Modular interface and experimental setup for in-vacuum operation of microfluidic devices, Rev. Sci. Instrum., 90(4) (2019) 045006, https://doi.org/10.1063/1.5088946.

    Article  Google Scholar 

  60. E. Delamarche et al., FluidFM: Development of the instrument as well as its applications for 2D and 3D lithography, Open-Space Microfluidics: Concepts, Implementations, Applications (2018) 295–323, https://doi.org/10.1002/9783527696789.ch14.

  61. F. Heuck et al., Evaporation based micro pump integrated into a scanning force microscope probe, Microelectron. Eng., 85(5) (2008) 1302–1305, https://doi.org/10.1016/j.mee.2007.12.047.

    Article  Google Scholar 

  62. J. Ko, F. Khan, Y. Nam, B. J. Lee and J. Lee, Nanomechanical sensing using heater-integrated fluidic resonators, Nano Lett., 22(19) (2022) 7768–7775, https://doi.org/10.1021/acs.nanolett.2c01572.

    Article  Google Scholar 

  63. J. Ko, F. Khan, B. J. Lee and J. Lee, Fabrication and characterization of fluidic channel and dispensing nozzle integrated microcantilever heaters, 2021 IEEE 34th International Conference on Micro Electro Mechanical Systems (MEMS) (2021) 845–847, https://doi.org/10.1109/MEMS51782.2021.9375248.

  64. N. Noeth, S. S. Keller and A. Boisen, Integrated cantilever-based flow sensors with tunable sensitivity for in-line monitoring of flow fluctuations in microfluidic systems, Sensors (Switzerland), 14(1) (2013) 229–244, https://doi.org/10.3390/s140100229.

    Article  Google Scholar 

  65. O. H. Paydar, C. N. Paredes, Y. Hwang, J. Paz, N. B. Shah and R. N. Candler, Characterization of 3D-printed microfluidic chip interconnects with integrated O-rings, Sens. Actuators A, Phys. (205) (2014) 199–203, https://doi.org/10.1016/j.sna.2013.11.005.

  66. J. Park, S. L. Karsten, S. Nishida, H. Kawakatsu and H. Fujita, Application of a new microcantilever biosensor resonating at the air-liquid interface for direct insulin detection and continuous monitoring of enzymatic reactions, Lab Chip, 12(20) (2012) 4115, https://doi.org/10.1039/c2lc40232g.

    Article  Google Scholar 

  67. B. Wijnen, E. J. Hunt, G. C. Anzalone and J. M. Pearce, Open-source syringe pump library, PLoS One, 9(9) (2014) 1–8, https://doi.org/10.1371/journal.pone.0107216.

    Article  Google Scholar 

  68. I. T. Ozbolat and M. Hospodiuk, Current advances and future perspectives in extrusion-based bioprinting, Biomaterials, 76 (2016) 321–343, https://doi.org/10.1016/j.biomaterials.2015.10.076.

    Article  Google Scholar 

  69. T. J. Hinton et al., Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels, Sci. Adv., 1(9) (2015) e1500758, https://doi.org/10.1126/sciadv.1500758.

    Article  Google Scholar 

  70. J. Chen et al., 3D printed microfluidic devices for circulating tumor cells (CTCs) isolation, Biosens. Bioelectron., 150 (2020) 111900, https://doi.org/10.1016/j.bios.2019.111900.

    Article  Google Scholar 

  71. H. Lee and D.-W. Cho, One-step fabrication of an organ-on-a-chip with spatial heterogeneity using a 3D bioprinting technology, Lab Chip, 16(14) (2016) 2618–2625, https://doi.org/10.1039/C6LC00450D.

    Article  Google Scholar 

  72. P. Roder and C. Hille, A multifunctional frontloading approach for repeated recycling of a pressure-controlled AFM micropipette, PLoS One, 10(12) (2015) 1–10, https://doi.org/10.1371/journal.pone.0144157.

    Article  Google Scholar 

  73. H. H. Perez Garza, M. K. Ghatkesar and U. Staufer, Aspiration through hollow cantilever-Based nanopipette by means of evaporation, Micro Nano Lett., 8(11) (2013) 758–761, https://doi.org/10.1049/mnl.2013.0362.

    Article  Google Scholar 

  74. J. Li et al., Electrocoiling-guided printing of multiscale architectures at single-wavelength resolution, Lab Chip, 19(11) (2019) 1953–1960, https://doi.org/10.1039/c9lc00145j.

    Article  Google Scholar 

  75. Y. Huang et al., Versatile, kinetically controlled, high precision electrohydrodynamic writing of micro/nanofibers, Sci. Rep., 4 (2014) 1–9, https://doi.org/10.1038/srep05949.

    Google Scholar 

  76. M. Chen, Z. Xu, J. H. Kim, S. K. Seol and J. T. Kim, Meniscus-on-demand parallel 3D nanoprinting, ACS Nano, 12(5) (2018) 4172–4177, https://doi.org/10.1021/acsnano.8b00706.

    Article  Google Scholar 

  77. Y. Zhang, B. Zhu, Y. Liu and G. Wittstock, Hydrodynamic dispensing and electrical manipulation of attolitre droplets, Nat. Commun., 7(1) (2016) 12424, https://doi.org/10.1038/ncomms12424.

    Article  Google Scholar 

  78. Y. Wu, M. S. Johannes and R. L. Clark, AFM-based voltage assisted nanoelectrospinning, Mater. Lett., 62(4) (2008) 699–702, https://doi.org/10.1016/jmatlet.2007.06.052.

    Article  Google Scholar 

  79. K. Kaisei, K. Kobayashi, K. Matsushige and H. Yamada, Fabrication of glycerol liquid droplet array by nano-inkjet printing method, J. Appl. Phys., 111(7) (2012) 074319, https://doi.org/10.1063/1.3699388.

    Article  Google Scholar 

  80. M. Soleymaniha and J. R. Felts, Design of a heated micro-cantilever optimized for thermo-capillary driven printing of molten polymer nanostructures, Int. J. Heat Mass Transf., 101 (2016) 166–174, https://doi.org/10.1016/j.ijheatmasstransfer.2016.04.063.

    Article  Google Scholar 

  81. M. Soleymaniha and J. R. Felts, Next generation of heated atomic force microscope cantilever for nanolithography: modelling, simulation, and nanofabrication, Novel Patterning Technologies for Semiconductors, MEMS/NEMS, and MOEMS 2019 (2019) 25, https://doi.org/10.1117/12.2514686.

  82. P. E. Sheehan, L. J. Whitman, W. P. King and B. A. Nelson, Nanoscale deposition of solid inks via thermal dip pen nanolithography, Appl. Phys. Lett., 85(9) (2004) 1589–1591, https://doi.org/10.1063/1.1785860.

    Article  Google Scholar 

  83. J. Zhang et al., Controlled molecular assembly via dynamic confinement of solvent, J. Phys. Chem. Lett., 9(21) (2018) 623–6237, https://doi.org/10.1021/acs.jpclett.8b02442.

    Article  Google Scholar 

  84. L. Hirt et al., Template-free 3D microprinting of metals using a force-controlled nanopipette for layer-by-layer electrodeposition, Adv. Mater., 28(12) (2016) 2311–2315, https://doi.org/10.1002/adma.201504967.

    Article  Google Scholar 

  85. W. W. Koelmans, T. Merle, G. Ercolano, M. Gabi and E. Hepp, Pinpoint additive manufacturing of complex 3D microstructures of pure metal, Euspen’s 18th International Conference (2018) 1–2.

  86. N. Helfricht, A. Mark, M. Behr, A. Bernet, H. W. Schmidt and G. Papastavrou, Writing with fluid: Structuring hydrogels with micrometer precision by AFM in combination with nanofluidics, Small, 13(31) (2017) 1–7, https://doi.org/10.1002/smll.2017062.

    Article  Google Scholar 

  87. J. Yang et al., High-resolution patterning of colloidal quantum dots via non-destructive, light-driven ligand crosslinking, Nat. Commun., 11(1) (2020) 2874, https://doi.org/10.1038/s41467-020-16652-4.

    Article  Google Scholar 

  88. Y. Yoon, S. Kim, D. Kim, S. K. Kauh and J. Lee, Four degrees-of-freedom direct writing of liquid metal patterns on uneven surfaces, Adv. Mater. Technol., 4(2) (2019) 1–10, https://doi.org/10.1002/admt.201800379.

    Google Scholar 

  89. T. Kim, D. Kim, B. J. Lee and J. Lee, Soft and deformable sensors based on liquid metals, Sensors, 19 (2019) 4250, https://doi.org/10.3390/s19194250.

    Article  Google Scholar 

  90. J. J. Chung, H. Im, S. H. Kim, J. W. Park and Y. Jung, Toward biomimetic scaffolds for tissue engineering: 3D printing techniques in regenerative medicine, Front. Bioeng. Biotechnol., 8 (2020) 586486, https://doi.org/10.3389/fbioe.2020.586406.

    Article  Google Scholar 

  91. H. Garza, M. Ghatkesar, S. Basak, P. Löthman and U. Staufer, Nano-workbench: A combined hollow afm cantilever and robotic manipulator, Micromachines (Basel), 6(5) (2015) 600–610, https://doi.org/10.3390/mi6050600.

    Article  Google Scholar 

  92. J. Geerlings et al., Electric field controlled nanoscale contactless deposition using a nanofluidic scanning probe, Appl. Phys. Lett., 107(12) (2015) 1–5, https://doi.org/10.1063/1.4931354.

    Article  Google Scholar 

  93. O. Y. Loh, A. M. Ho, J. E. Rim, P. Kohli, N. A. Patankar and H. D. Espinosa, Electric field-induced direct delivery of proteins by a nanofountain probe, Proc. Natl. Acad. Sci., 105(43) (2008) 16438–16443, https://doi.org/10.1073/pnas.0806651105.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Research Foundation of Korea (NRF) grants (Ministry of Science and ICT) (NRF-2020R1A2C3004885 and NRF-2020R1A4A2002728), South Korea. All reprinted figures are under Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jungchul Lee.

Additional information

Juhee Ko received B.S. degree in Mechanical Engineering from Sogang University in 2019 and the M.S. degree in Mechanical Engineering from the Korea Advanced Institute of Science and Technology (KAIST) in 2021. She is currently enrolled in the Ph.D. program in Mechanical Engineering at KAIST. Her research interests include the design and fabrication of MEMS transducers and multimodal sensing with microfluidic resonators.

Jungchul Lee is an Associate Professor in the Department of Mechanical Engineering at Korea Advanced Institute of Science and Technology. He received the B.S. and M.S. degrees in the Mechanical Engineering from Seoul National University, Seoul, Korea in 2001 and 2003, respectively. He received the Ph.D. degree in the Mechanical Engineering from Georgia Institute of Technology in 2007. During 2007–2008, he worked as a postdoctoral research associate in the Mechanical Science and Engineering at the University of Illinois Urbana-Champaign. During 2008–2010, he worked as a postdoctoral research associate in the Department of Biological Engineering at Massachusetts Institute of Technology. Before joining the KAIST, he was an Associate Professor in the Department of Mechanical Engineering at Sogang University. His research interests include large-scale batch fabrication of functional nanostructures based on silicon self-assembly, hydrogel based micro-/nanoelectromechanical systems (MEMS/NEMS), and materials and processing for flexible, stretchable, and wearable devices. He is currently focusing on nanoscale 3D printing, multifunctional atomic force microscopy, and single molecule force/mass spectroscopy. He serves as a convenor of International Electrotechnical Commission (IEC) SC47E/WG1 (Semiconductor sensors) and an assistant secretary of IEC TC124 (Wearable electronic devices and technologies). He is a member of the Korean Society of Mechanical Engineers (KSME) and a member of the Society of Micro Nano Systems. He is the recipient of the Academic Award from the Society of Micro Nano Systems in 2016, the IEC 1906 award in 2016 and the Academic Award from the Korean Society of Mechanical Engineers Micro/Nano division in 2019. He organized the 15th International Workshop on Nanomechanical Sensing (NMC 2018) in 2018.

Nada Ben Fredj received a B.S. degree in Mechanical Engineering at the University of British Columbia in 2021 and is currently pursuing a Master’s degree at the Korea Advanced Institute of Science and Technology (KAIST) in the Mechanical Engineering Department. Her research interests included MEMS and nanotechnology for biomedical applications, as well as origami-based 4D printing.

Rafita Erli Adhawiyah received B.S. degree in Biomedical Engineering from Bandung Institute of Technology, Indonesia in 2021. She is currently enrolled in the Master’s program in Mechanical Engineering at KAIST. Her research interests include design and fabrication in microfluidic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ko, J., Fredj, N.B., Adhawiyah, R.E. et al. Nozzle-based precision patterning with micro-/nano fluidics integrated cantilevers. J Mech Sci Technol 37, 887–900 (2023). https://doi.org/10.1007/s12206-023-0130-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-023-0130-5

Keywords

Navigation