Skip to main content
Log in

Airfoil optimization based on multi-objective bayesian

  • Original Article
  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

This paper proposes a novel aerodynamic optimization framework for airfoils, which utilizes OpenFOAM, an open-source computational fluid dynamics software, and a Bayesian network to achieve efficient optimization of airfoil aerodynamic performance. Aerodynamic analysis of the NACA 4-digit airfoil was performed by adopting the Spalart-Allmaras turbulence model to solve the Reynolds-averaged Navier—Stokes equations. With the use of this framework, the optimal lift-to-drag ratio can be found by using a small number of objective evaluations. The optimal angle of attack and aerodynamic shape can be obtained under different thicknesses. Finally, after various aerodynamic objectives are arranged and combined, the Pareto fronts were obtained by the multi-objective Bayesian algorithm. Compared with the original NACA four-digit airfoil, the lift-to-drag ratio of the airfoil after single-objective optimization is greatly improved as the thickness increases, and the airfoil after multi-objective optimization achieves different Pareto sets according to different sailing phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

t :

Maximum thickness

y th :

Distribution of thickness

y c :

Mean camber line

m :

Maximum camber

p :

Position of maximum camber

c :

Chord length

L :

Lift

c l :

Lift coefficient

\({c_{{l_{datum}}}}\) :

Datum of lift coefficient

D :

Drag

c d :

Drag coefficient

\({c_{{d_{datum}}}}\) :

Datum of drag coefficient

c l/c d :

Lift-to-drag ratio

c f :

Friction drag coefficient

c p :

Pressure drag coefficient

α :

Angle of attack

ρ :

Local density

v :

Incoming flow velocity

S :

Cross-sectional area of the airfoil

ds :

Differential of S

p :

Pressure acting on the surface ds

p o :

Pressure away from the surface ds

\({{\bf{\hat t}}}\) :

Tangent direction vector of the surface ds

î:

Unit direction vector of the incoming flow

\({{\bf{\hat n}}}\) :

Normal direction vector of the surface ds

f :

Objective function

X :

Search space

Data :

Dataset

D 1:t :

Observed set

x i x j :

Ones in the existing dataset

x test i x test j :

New observations

p(f):

Prior probability distribution

p(D 1,t):

Marginal likelihood distribution

μ :

Mean

σ 2 :

Variance

I :

Unit vectors

Re :

Reynolds number

N :

Training points of MOBO

GP :

Gaussian process

Ac :

Acquisition function

UCB :

Upper confidence bound

SA :

Spalart-allmaras turbulence model

AOA :

Angle of attack

RANS :

Reynolds-averaged Navier-Stokes

CFD :

Computational fluid dynamics

BO :

Bayesian optimization

MOBO :

Multi-objective bayesian optimization

GA :

Genetic algorithm

NSGA :

Non-dominated sorting genetic algorithm

References

  1. X. He, J. Li, C. A. Mader, A. Yildirim and J. R. R. A. Martins, Robust aerodynamic shape optimization—From a circle to an airfoil, Aerosp. Sci. Technol., 87 (2019) 48–61, doi: https://doi.org/10.1016/j.ast.2019.01.051.

    Article  Google Scholar 

  2. S. Peigin and B. Epstein, Robust optimization of 2D airfoils driven by full Navier-Stokes computations, Comput. Fluids, 33(9) (2004) 1175–1200.

    Article  MATH  Google Scholar 

  3. A. Vicini and D. Quagliarella, Airfoil and wing design through hybrid optimization strategies, 16th AIAA Appl. Aerodyn. Conf., 37(5) (1998) 536–546, doi: https://doi.org/10.2514/6.1998-2729.

    Google Scholar 

  4. A. Shahrokhi and A. Jahangirian, Airfoil shape parameterization for optimum Navier-Stokes design with genetic algorithm, Aerosp. Sci. Technol., 11(6) (2007) 443–450, doi: https://doi.org/10.1016/j.ast.2007.04.004.

    Article  MATH  Google Scholar 

  5. A. Jameson, L. Martinelli and J. Vassberg, Using computational fluid dynamics for aerodynamics-a critical assessment, Proceedings of ICAS (2002).

  6. F. Lynch, Chapter II. Commercial transports-aerodynamic design for cruise performance efficiency, Transonic Aerodynamics, AIAA (1981) 81–147.

    Google Scholar 

  7. L. A. Schmit and B. Farshi, Some approximation concepts for structural synthesis, AIAA J., 12,(5) (1973) 692–699.

    Article  Google Scholar 

  8. K. S. Zhang, Z. H. Han, W. J. Li and W. P. Song, Bilevel adaptive weighted sum method for multidisciplinary multi-objective optimization, AIAA J., 46(10) (2008) 2611–2622.

    Article  Google Scholar 

  9. A. Vavalle and N. Qin, Iterative response surface based optimization scheme for transonic airfoil design, J. Aircr., 44(2) (2007) 365–376.

    Article  Google Scholar 

  10. A. I. J. Forrester and A. J. Keane, Recent advances in surrogate-based optimization, Prog. Aerosp. Sci., 45(1–3) (2009) 50–79.

    Article  Google Scholar 

  11. A. Sóbester, S. J. Leary and A. J. Keane, On the design of optimization strategies based on global response surface approximation models, J. Glob. Optim., 33(1) (2005) 31–59.

    Article  MathSciNet  MATH  Google Scholar 

  12. Y. Yun, M. Yoon and H. Nakayama, Multi-objective optimization based on meta-modeling by using support vector regression, Optim. Eng., 10(2) (2009) 167–181.

    Article  MathSciNet  MATH  Google Scholar 

  13. F. Mastrippolito, S. Aubert, and F. Ducros, Kriging metamodels-based multi-objective shape optimization applied to a multi-scale heat exchanger, Comput. Fluids, 221 (2021) 104899, doi: https://doi.org/10.1016/j.compfluid.2021.104899.

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Liu, Z. H. Han and W. Song, Comparison of infill sampling criteria in kriging-based aerodynamic optimization, 28th Congress of the International Council of the Aeronautical Sciences (2012) 23–28.

  15. B. U. Yuepeng, S. Wenping, H. A. N. Zhonghua, Y. Zhang and L. Zhang, Aerodynamic/aeroacoustic variable-fidelity optimization of helicopter rotor based on hierarchical kriging model, Chinese J. Aeronaut., 33(2) (2020) 476–492.

    Article  Google Scholar 

  16. X. F. Wang, G. Xi and Z. H. Wang, Aerodynamic optimization design of centrifugal compressor’s impeller with Kriging model, Proc. Inst. Mech. Eng. Part A J. Power Energy, 220(6) (2006) 589–597.

    Article  Google Scholar 

  17. M. Hinze, A. Walther and J. Sternberg, An optimal memory- reduced procedure for calculating adjoints of the instationary Navier- Stokes equations, Optim. Control Appl. Methods, 27(1) (2006) 19–40.

    Article  MathSciNet  Google Scholar 

  18. H. Jalali, I. Van Nieuwenhuyse and V. Picheny, Comparison of kriging-based algorithms for simulation optimization with heterogeneous noise, Eur. J. Oper. Res., 261(1) (2017) 279–301.

    Article  MathSciNet  MATH  Google Scholar 

  19. G. Agarwal, H. A. Doan, L. A. Robertson, L. Zhang and R. S. Assary, Discovery of energy storage molecular materials using quantum chemistry-guided multiobjective bayesian optimization, Chem. Mater., 33(20) (2021) 8133–8144, doi: 10.1021/acs.chemmater.1c02040.

    Article  Google Scholar 

  20. P. P. Galuzio, E. H. de Vasconcelos Segundo, L. dos S. Coelho and V. C. Mariani, MOBOpt — multi-objective Bayesian optimization, SoftwareX, 12 (2020) 100520, doi: 10.1016/j.softx.2020.100520.

    Article  Google Scholar 

  21. F. Chen, L. Zhang, X. Huai, J. Li, H. Zhang and Z. Liu, Comprehensive performance comparison of airfoil fin PCHEs with NACA 00XX series airfoil, Nucl. Eng. Des., 315 (2017) 42–50.

    Article  Google Scholar 

  22. Y. Liu, C. Yang and X. Song, An airfoil parameterization method for the representation and optimization of wind turbine special airfoil, J. Therm. Sci., 24(2) (2015) 99–108, doi: https://doi.org/10.1007/s11630-015-0761-7.

    Article  Google Scholar 

  23. H. Sobieczky, Parametric airfoils and wings, Recent Development of Aerodynamic Design Methodologies, Springer (1999) 71–87.

    Article  MATH  Google Scholar 

  24. S. Echi, A. Bouabidi, Z. Driss and M. S. Abid, CFD simulation and optimization of industrial boiler, Energy, 169(October) (2019) 105–114, doi: 10.1016/j.energy.2018.12.006.

    Article  Google Scholar 

  25. Hetyei, I. Molnar and F. Szlivka, Comparing different CFD software with NACA 2412 airfoil, Prog. Agric. Eng. Sci., 16(1) (2020) 25–40, doi: 10.1556/446.2020.00004.

    Google Scholar 

  26. K. He, G. Minelli, J. Wang, G. Gao and S. Krajnović, Assessment of LES, IDDES and RANS approaches for prediction of wakes behind notchback road vehicles, J. Wind Eng. Ind. Aerodyn., 217 (2021) 104737.

    Article  Google Scholar 

  27. K. He, G. Minelli, J. Wang, T. Dong, G. Gao and S. Krajnović, Numerical investigation of the wake bi-stability behind a notchback Ahmed body, J. Fluid Mech., 926 (2021).

  28. L. Gao, J. Xu and G. Gao, Numerical simulation of turbulent flow past airfoils on OpenFOAM, Procedia Eng., 31 (2012) 756–761, doi: 10.1016/j.proeng.2012.01.1098.

    Article  Google Scholar 

  29. R. Lam, M. Poloczek, P. Frazier and K. E. Willcox, Advances in Bayesian optimization with applications in aerospace engineering, 2018 AIAA Non-Deterministic Approaches Conference (2018) 1656.

  30. J. T. Springenberg, A. Klein, S. Falkner and F. Hutter, Bayesian optimization with robust Bayesian neural networks, Adv. Neural Inf. Process. Syst., 29 (2016).

  31. C. Byrne, Chapter 13. The EM algorithm, Iterative Optim. Inverse Probl., CRC Press (2018) 203–220, doi: https://doi.org/10.1201/b16485-16.

  32. J. Quinonero-Candela and C. E. Rasmussen, A unifying view of sparse approximate Gaussian process regression, J. Mach. Learn. Res., 6 (2005) 1939–1959.

    MathSciNet  MATH  Google Scholar 

  33. K. Xu, Maximum likelihood estimate, Encycl. Syst. Biol., Springer Reference (2013) 1189–1189, doi: https://doi.org/10.1007/978-1-4419-9863-7_454.

  34. I. Y. Kim and O. L. De Weck, Adaptive weighted-sum method for bi-objective optimization: pareto front generation, Struct. Multidiscip. Optim., 29(2) (2005) 149–158.

    Article  Google Scholar 

  35. I. Giagkiozis and P. J. Fleming, Pareto front estimation for decision making, Evol. Comput., 22(4) (2014) 651–678.

    Article  Google Scholar 

  36. J. Teich, Pareto-front exploration with uncertain objectives, International Conference on Evolutionary Multi-Criterion Optimization (2001) 314–328.

  37. A. V. Lotov and K. Miettinen, Visualizing the pareto frontier, Multiobjective Optimization, Springer (2008) 213–243.

    Article  Google Scholar 

  38. H. A. Abbass, R. Sarker and C. Newton, PDE: a paretofrontier differential evolution approach for multi-objective optimization problems, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No. 01TH8546), 2 (2001) 971–978.

    Article  Google Scholar 

  39. S. B. M. Shivananda Sarkar, CFD analysis of effect of variation in angle of attack over NACA 2412 airfoil through the shear stress transport turbulence model, IJSRD - Int. J. Sci. Res. Dev., 5(2) (2017) 58–62 (Online).

    Google Scholar 

  40. J. M. Rainbird et al., On the influence of virtual camber effect on airfoil polars for use in simulations of darrieus wind turbines, Energy Convers. Manag., 106 (2015) 373–384.

    Article  Google Scholar 

  41. E. T. Turgut et al., Fuel flow analysis for the cruise phase of commercial aircraft on domestic routes, Aerosp. Sci. Technol., 37 (2014) 1–9.

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the Natural Science Foundation of Jiangsu Province BK20201302 and the Fundamental Research Funds for the Central Universities No. 30919011401.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Yu Wu.

Additional information

Mingyu Wu received his B.S. in electrical engineering and automation from Nanjing University of Science and Technology, Nanjing, China in 2018. He is currently a Ph.D. student at the National Key Laboratory of Transient Physics, Nanjing University of Science and Technology, Nanjing, China. His current research interests include aerodynamics shape optimization, guidance and control, and machine learning.

Ruolin Liu received her B.S. in mechanical engineering from the Northeastern University, Shenyang, China, in 2020. She is currently a postgraduate student in aerospace, Nanjing University of Science and Technology, Nanjing, China. Her current research interests include aerodynamics shape optimization, machine learning, and trajectory design of guidance rockets.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, RL., Zhao, Q., He, XJ. et al. Airfoil optimization based on multi-objective bayesian. J Mech Sci Technol 36, 5561–5573 (2022). https://doi.org/10.1007/s12206-022-1020-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-022-1020-y

Keywords

Navigation