Skip to main content
Log in

Translocation of charged particles through a thin micropore under pressure-driven flow

  • Original Article
  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

We report the effects of a particle surface charge during translocation through a thin micropore based on the simulation and experiments. The translocation of carboxylated and nonfunctionalized polystyrene beads through a fabricated micropore was measured. To compare the translocation behaviors of a particle with/without surface charge under the same driving force, we used a pressure-driven method low bias voltage. We then analyzed the signals with two factors: the translocation time and blocking current. Based on the analysis, we found that, at a low flow rate, the translocation time was largely dependent on the surface charge of the particles. More importantly, we found an unusual phenomenon that the flow rate can affect the blocking current, and the level of effect was significantly determined by the particle’s surface charge. To understand this phenomenon, we suggest a plausible mechanism considering the effect of the convective flow on the counterion flux and FEM results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Shi, A. K. Friedman and L. A. Baker, Nanopore sensing, Analytical Chemistry, 89(1) (2017) 157–188.

    Article  Google Scholar 

  2. A. Ameur, W. P. Kloosterman and M. S. Hestand, Single-molecule sequencing: towards clinical applications, Trends in Bio-technology, 37(1) (2019) 72–85.

    Article  Google Scholar 

  3. T. Vaclavek, J. Prikryl and F. Foret, Resistive pulse sensing as particle counting and sizing method in microfluidic systems: designs and applications review, Journal of Separation Science, 42(1) (2019) 445–457.

    Article  Google Scholar 

  4. D. Branton, D. W. Deamer, A. Marziali, H. Bayley, S. A. Benner, T. Butler, M. Di Ventra, S. Garaj, A. Hibbs, X. Huang, S. B. Jovanovich, P. S. Krstic, S. Lindsay, X. S. Ling, C. H. Mastrangelo, A. Meller, J. S. Oliver, Y. V. Pershin, J. M. Ramsey, R. Riehn, G. V. Soni, V. Tabard-Cossa, M. Wanunu, M. Wiggin and J. A. Schloss, The potential and challenges of nanopore sequencing, Nature Biotechnology, 26(10) (2008) 1146–1153.

    Article  Google Scholar 

  5. M. Sivakumaran and M. Platt, Tunable resistive pulse sensing: potential applications in nanomedicine, Nanomedicine, 11(16) (2016) 2197–2214.

    Article  Google Scholar 

  6. D. Kozaka, W. Andersona, R. Vogel and M. Trau, Advances in resistive pulse sensors: devices bridging the void between molecular and microscopic detection, Nano Today, 6(5) (2011) 531–545.

    Article  Google Scholar 

  7. R. Bowden, R. W. Davies, A. Heger, A. T. Pagnamenta, M. de Cesare, L. E. Oikkonen, D. Parkes, C. Freeman, F. Dhalla, S. Y. Patel, N. Popitsch, C. L. C. Ip, H. E. Roberts, S. Salatino, H. Lockstone, G. Lunter, J. C. Taylor, D. Buck, M. A. Simpson and P. Donnelly, Sequencing of human genomes with nanopore technology, Nature Communications, 10(1) (2019) 1–9.

    Article  Google Scholar 

  8. G. Di Muccio, A. E. Rossini, D. Di Marino, G. Zollo and M. Chinappi, Insights into protein sequencing with an α-hemolysin nanopore by atomistic simulations, Scientific Reports, 9(1) (2019) 1–8.

    Article  Google Scholar 

  9. E. Weatherall and G. R. Willmott, Applications of tunable resistive pulse sensing, Analyst, 140(10) (2015) 3318–3334.

    Article  Google Scholar 

  10. E. Ogura, P. J. Abatti and T. Moriizumi, Measurement of human red blood cell deformability using a single micropore on a thin Si3N4 film, IEEE Transactions on Biomedical Engineering, 38(8) (1991) 721–726.

    Article  Google Scholar 

  11. Z. Yuan, C. Wang, X. Yi, Z. Ni, Y. Chen and T. Li, Solid-state nanopore, Nanoscale Research Letters, 13(1) (2018) 56–65.

    Article  Google Scholar 

  12. R. W. DeBlois, C. P. Bean and R. K. A. Wesley, Electrokinetic measurements with submicron particles and pores by the resistive pulse technique, Journal of Colloid and Interface Science, 61(2) (1977) 323–335.

    Article  Google Scholar 

  13. R. W. DeBlois and C. P. Bean, Counting and sizing of submicron particles by the resistive pulse technique, Review of Scientific Instruments, 41(7) (1970) 909–916.

    Article  Google Scholar 

  14. A. Fontes, H. P. Fernandes, A. A. de Thomaz, L. C. Barbosa, M. L. Barjas-Castro and C. L. Cesar, Measuring electrical and mechanical properties of red blood cells with double optical tweezers, Journal of Biomedical. Optics, 13(1) (2008) 014001.

    Article  Google Scholar 

  15. B. Luan and A. Aksimentiev, Effective screening of the DNA charge in a nanopore, Physical Review E, 78(2) (2008) 021912.

    Article  Google Scholar 

  16. S. Salgin, U. Salgin and S. Bahadir, Zeta potentials and isoelectric points of biomolecules: the effects of ion types and ionic strengths, International Journal of Electrochemical Science, 7 (2012) 12404–12414.

    Google Scholar 

  17. A. V. Jagtiani, R. Sawant and J. Zhe, A label-free high throughput resistive-pulse sensor for simultaneous differentiation and measurement of multiple particle-laden analytes, Journal of Micromechanics and Microengineering, 16(8) (2006) 1530–1539.

    Article  Google Scholar 

  18. Y. Qiu, C. Y. Lin, P. Hinkle, T. S. Plett, C. Yang, J. V. Chacko, M. A. Digman, L. H. Yeh, J. P. Hsu and Z. S. Siwy, Highly charged particles cause a larger current blockage in micropores compared to neutral particles, ACS Nano, 10(9) (2016) 8413–8422.

    Article  Google Scholar 

  19. S. Howorka and Z. Siwy, Nanopore analytics: sensing of single molecules, Chemical Society Reviews, 38(8) (2009) 2360–2384.

    Article  Google Scholar 

  20. J. Menestrina, C. Yang, M. Schiel, I. Vlassiouk and Z. S. Siwy, Charged particles modulate local ionic concentrations and cause formation of positive peaks in resistive-pulse-based detection, Journal of Physical Chemistry C, 118(5) (2014) 2391–2398.

    Article  Google Scholar 

  21. Y. Qiu, C. Yang, P. Hinkle, I. V. Vlassiouk and Z. S. Siwy, Anomalous mobility of highly charged particles in pores, Analytical Chemistry, 87(16) (2015) 8517–8523.

    Article  Google Scholar 

  22. K. Chen, L. Shan, S. He, G. Hu, Y. Meng and Y. Tian, Biphasic resistive pulses and ion concentration modulation during particle translocation through cylindrical nanopores, Journal of Physical Chemistry C, 119(15) (2015) 8329–8335.

    Article  Google Scholar 

  23. Y. Zheng, J. Nguyen, C. Wang and Y. Sun, Electrical measurement of red blood cell deformability on a microfluidic device, Lab on a Chip, 13(16) (2013) 3275–3283.

    Article  Google Scholar 

  24. C. Plesa and C. Dekker, Data analysis methods for solid-state nanopores, Nanotechnology, 26(8) (2015) 084003.

    Article  Google Scholar 

  25. A. Adamo, A. Sharei, L. Adamo, B. Lee, S. Mao and K. F. Jensen, Microfluidics-based assessment of cell deformability, Analytical Chemistry, 84(15) (2012) 6438–6443.

    Article  Google Scholar 

  26. Q. Guo, S. P. Duffy, K. Matthews, A. T. Santoso, M. D. Scott and H. Ma, Microfluidic analysis of red blood cell deformability, Journal of Biomechanics, 47(8) (2014) 1767–1776.

    Article  Google Scholar 

  27. M. Tsutsui, S. Hongo, Y. He, M. Taniguchi, N. Gemma and T. Kawai, Single-nanoparticle detection using a low-aspect-ratio pore, ACS Nano, 6(4) (2012) 3499–3505.

    Article  Google Scholar 

  28. M. Davenport, K. Healy, M. Pevarnik, N. Teslich, S. Cabrini, A. P. Morrison, Z. S. Siwy and S. E. Letent, The role of pore geometry in single nanoparticle detection, ACS Nano, 6(9) (2012) 8366–8380.

    Article  Google Scholar 

  29. W. J. Lan, C. Kubeil, J. W. Xiong, A. Bund and H. S. White, Effect of surface charge on the resistive pulse waveshape during particle translocation through glass nanopores, Journal of Physical Chemistry C, 118(5) (2014) 2726–2734.

    Article  Google Scholar 

  30. W. J. Lan, D. A. Holden, J. Liu and H. S. White, Pressure-driven nanoparticle transport across glass membranes containing a conical-shaped nanopore, Journal of Physical Chemistry C, 115(38) (2011) 18445–18452.

    Article  Google Scholar 

  31. E. Weatherall, P. Hauer, R. Vogel and G. R. Willmott, Pulse size distributions in tunable resistive pulse sensing, Analytical Chemistry, 88(17) (2016) 8648–8656.

    Article  Google Scholar 

  32. G. R. Willmott, S. S. C. Yu and R. Vogel, Pressure dependence of particle transport through resizable nanopores, 2010 International Conference on Nanoscience Nanotechnology (2010) 128–131.

  33. A. Bandopadhyay and U. Ghosh, Electrohydrodynamic phenomena, Journal of Indian Institute of Science, 98(2) (2018) 201–225.

    Article  Google Scholar 

  34. A. Arima, M. Tsutsui and M. Taniguchi, Volume discrimination of nanoparticles via electrical trapping using nanopores, Journal of Nanobiotechnology, 17(40) (2019) 1–6.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Basic Science Research Program (2021R1A2B5B03001811), STEAM Program (2022 M3C1A3081178) and ERC program (2016M3D1A1952991) through the National Research Foundation, funded by the Ministry of Science and ICT, Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Soo Han.

Additional information

Junsang Moon received his M.S., and B.S. degrees in Mechanical Engineering from Korea University, in 2021, and in 2019, respectively. His research interests were focused on microparticle detection using micropore sensors.

Chang-Woo Song is an integrated Ph.D. program candidate in the School of Mechanical Engineering, Korea University, Seoul, Korea. He received his B.S. degree in Mechanical Engineering from Korea University, in 2018. His research interests are focused on microparticle detection using micropore sensor.

Chang-Soo Han is a Professor in Korea University, Seoul, Korea. He got B.S. and M.S. degrees in Seoul National University and worked for Samsung Electronics Co. for 6 years. He received his Ph.D. degree in Mechanical Engineering from KAIST in 2000. And he worked in KIMM for 11 years and moved to Korea University in 2011. His research interests are biomimetic materials, sensors and systems in the nanoscale.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moon, J., Song, C.W. & Han, CS. Translocation of charged particles through a thin micropore under pressure-driven flow. J Mech Sci Technol 36, 5181–5189 (2022). https://doi.org/10.1007/s12206-022-0930-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-022-0930-z

Keywords

Navigation