Skip to main content
Log in

Characterizations of the strain-stiffening property and cytotoxicity in the self-assembled polyampholyte hydrogel

  • Original Article
  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

Strain-stiffening is a mechanical response that mimics the behavior of biological tissues. In this study, we fabricated and characterized P(TM co SA-CAA) hydrogel. These hydrogels were referred to as SA, 0.75 SA + 0.25 CAA, 0.5 SA + 0.5 CAA, 0.25 SA + 0.75 CAA, and CAA. Scanning electron microscopy of the hydrogel revealed that the nanofibrillar networks were homogeneously and compactly connected. Notably, the addition of SA-CAA led to remarkable improvement (of 260 kPa and over fourfold) in the elastic modulus and elongation at the break point. The best strain-stiffening was observed for the 0.5 SA + 0.5 CAA hydrogel. Additionally, the investigation of P(TM co SA-CAA) hydrogel mechanism viability and proliferation revealed no toxicity. The strain-stiffening property of P(TM co SA-CAA) facilitates the adhesion of cells. These results suggest that the strain-stiffening of self-assembled P(TM co SA-CAA) hydrogels may be appealing for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Zolfaghari, M. Moghimi Zand and M. R. K. Mofrad, Strain-stiffening and strain-softening responses in random viscoelastic fibrous networks: interplay between fiber orientation and viscoelastic softening, Soft Materials, 18 (2020) 373–385.

    Article  Google Scholar 

  2. F. Meng and E. M. Terentjev, Nonlinear elasticity of semi-flexible filament networks, Soft Matter, 12 (2016) 6749–6756.

    Article  Google Scholar 

  3. B. Fereidoonnezhad, C. O’Conno and J. P. McGarry, A new anisotropic soft tissue model for elimination of unphysical auxetic behaviour, Journal of Biomechanics, 111 (2020) 110006.

    Article  Google Scholar 

  4. J. John, D. Ray, V. K. Aswal, A. P. Deshpande and S. Varughese, Dissipation and strain-stiffening behavior of pectin-Ca gels under LAOS, Soft Matter, 15 (2019) 6852–6866.

    Article  Google Scholar 

  5. M. Fernandez-Castano Romera, R. P. M. Lafleur, C. Guibert, I. K. Voets, C. Storm and R. P. Sijbesma, Strain stiffening hydrogels through self-assembly and covalent fixation of semi-flexible fibers, Angew. Chm. Int. Ed. Engl., 56(30) (2017) 8771–8775.

    Article  Google Scholar 

  6. Y. Wang, Z. Xu, M. Lovrak, V. A. A. Le Sage, K. Zhang, X. Guo, R. Eelkema, E. Mendes and J. H. V. Esch, Biomimetic strain-stiffening self-assembled hydrogels, Angew. Chm. Int. Ed. Engl., 59(12) (2020) 4830–4834.

    Article  Google Scholar 

  7. C. Shao, L. Meng, M. Wang, C. Cui, B. Wang, C.-R. Han, F. Xu and J. Yang, Mimicking dynamic adhesiveness and strain-stiffening behavior of biological tissues in tough and self-healable cellulose nanocomposite hydrogels, ACS Applied Materials Interfaces, 11 (2019) 5885–5895.

    Article  Google Scholar 

  8. B. Yan, J. Huang, L. Han, L. Gong, L. Li, J. N. Israelachvili and H. Zeng, Duplicating dynamic strain-stiffening behavior and nanomechanics of biological tissues in a synthetic self-healing flexible network hydrogel, ACS Nano, 11 (2017) 11074–11081.

    Article  Google Scholar 

  9. M. Vatankhah-Varnosfaderani, A. N. Keith, Y. Cong, H. Liang, M. Rosenthal, M. Sztucki, C. Clair, S. Magonov, D. A. Ivanov, A. V. Dobrynin and S. S. Sheiko, Chameleon-like elastomers with molecularly encoded strain-adaptive stiffening and coloration, Science, 359 (2018) 1509–1513.

    Article  Google Scholar 

  10. S. M. Hashemnejad and S. Kundu, Strain stiffening and negative normal stress in alginate hydrogels, Journal of Polymer Science, Part B: Polymer Physics, 54 (2016) 1767–1775.

    Article  Google Scholar 

  11. L. Jin and Z. Suo, Smoothening creases on surfaces of strain-stiffening materials, Journal of the Mechanics Physics of Solids, 74 (2015) 68–79.

    Article  Google Scholar 

  12. Z. Liu, Y. Faraj, X. J. Ju, W. Wang, R. Xie and L.-Y. Chu, Nanocomposite smart hydrogels with improved responsiveness and mechanical properties: a mini review, Journal of Polymer Science Part B: Polymer Physics, 56 (2018) 1306–1313.

    Article  Google Scholar 

  13. S. Kudaibergenov, J. Koetz and N. Nuraje, Nanostructured hydrophobic polyampholytes: self-assembly, stimuli-sensitivity, and application, Advanced Composites Hybrid Materials, 1 (2018) 649–684.

    Article  Google Scholar 

  14. A. Vedadghavami, F. Minooei, M. H. Mohammadi, S. Khetani, A. R. Kolahchi, S. Mashayekhan and A. S. Nezhadd, Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications, Acta Biomaterialia, 62 (2017) 42–63.

    Article  Google Scholar 

  15. K. Bertula, L. Martikainen, P. Munne, S. Hietala, J. Klefström, O. Ikkala and Nonappa, Strain-stiffening of agarose gels, ACS Macro Letters, 8(6) (2019) 670–675.

    Article  Google Scholar 

  16. F. Burla, J. Tauber, S. Dussi, J. van der Gucht and G. H. Koenderink, Stress management in composite biopolymer networks, Nature Physics, 15 (2019) 549–553.

    Article  Google Scholar 

  17. M. Jaspers, M. Dennison, M. F. J. Mabesoone, F. C. MacKintosh, A. E. Rowan and P. H. J. Kouwer, Ultra-responsive soft matter from strain-stiffening hydrogels, Nature Communications, 5 (2014) 1–8.

    Article  Google Scholar 

  18. Y. H. Tran, M. J. Rasmuson, T. Emrick, J. Klie and S. R. Peyton, Strain-stiffening gels based on latent crosslinking, Soft Matter, 13 (2017) 9007–9014.

    Article  Google Scholar 

  19. X. Yang, H. Yano and K. Abe, Strain-stiffening composite hydrogels through UV grafting of cellulose nanofibers, Cellulose, 28 (2021) 1489–1497.

    Article  Google Scholar 

  20. P. H. J. Kouwer, M. Koepf, V. A. A. Le Sage, M. Jaspers, A. M. van Buul, Z. H. Eksteen-Akeroyd, T. Woltinge, E. Schwartz, H. J. Kitto, R. Hoogenboom, S. J. Picken, R. J. M. Nolte, E. Mendes and A. E. Rowan, Responsive biomimetic networks from polyisocyanopeptide hydrogels, Nature, 493 (2013) 651–655.

    Article  Google Scholar 

  21. E. Prince and E. Kumacheva, Design and applications of man-made biomimetic fibrillar hydrogels, Nature Reviews Materials, 4 (2019) 99–115.

    Article  Google Scholar 

  22. H. Garcia-Seisdedos, C. Empereur-Mot, N. Elad and E. D. Levy, Proteins evolve on the edge of supramolecular self-assembly, Nature, 548 (2017) 244–247.

    Article  Google Scholar 

  23. N. Singh, M. Kumar, J. F. Miravet, R. V. Ulijn and B. Escuder, Peptide-based molecular hydrogels as supramolecular protein mimics, Chemistry-A European Journal, 23 (2017) 981–993.

    Article  Google Scholar 

  24. Y. Ji, X. Yang, Z. Ji, L. Zhu, N. Ma, D. Chen, X. Jia, J. Tang and Y. Cao, DFT-calculated IR spectrum amide I, II, and III band contributions of N-methylacetamide fine components, ACS Omega, 5 (2020) 8572–8578.

    Article  Google Scholar 

  25. H. Ghimire, M. Venkataramani, Z. Bian, Y. Liu and A. G. Unil Perera, ATR-FTIR spectral discrimination between normal and tumorous mouse models of lymphoma and melanoma from serum samples, Scientific Reports, 7 (2017) 1–9.

    Article  Google Scholar 

  26. S. Cao, M. N. Barcellona, F. Pfeiffer and M. T. Bernards, Tunable multifunctional tissue engineering scaffolds composed of three-component polyampholyte polymer, Journal of Applied Polymer Science, 133(40) (2016) 43985.

    Article  Google Scholar 

  27. S. L. Haag and M. T. Bernards, Enhanced biocompatibility of polyampholyte hydrogels, Langmuir, 36 (2020) 3292–3299.

    Article  Google Scholar 

  28. A. A. Abalymov, C. A. B. Santos, L. V. der Meeren, D. V. de Walle, K. Dewettinck, B. V. Parakhonskiy and A. G. Skirtach, Nanofibrillar hydrogels by temperature driven self-assembly: new structures for cell growth and their biological and medical implications, Advanced Materials Interfaces, 8 (2021) 2002202.

    Article  Google Scholar 

  29. K. Abe and H. Yano, Formation of hydrogels from cellulose nanofibers, Carbohydrate Polymers, 85 (2011) 733–737.

    Article  Google Scholar 

  30. A. Levin, T. A. Hakala, L. Schnaider, G. J. L. Bernardes, E. Gazit and T. P. J. Knowles, Biomimetic peptide self-assembly for functional materials, Nature Reviews Chemistry, 4 (2020) 615–634.

    Article  Google Scholar 

  31. M. Chau, S. E. Sriskandha, H. Thérien-Aubin and E. Kumacheva, Supramolecular nanofibrillar polymer hydrogels, Advances in Polymer Science, 268 (2015) 167–208.

    Article  Google Scholar 

  32. H. Charaya, L. Xinda, J. Nathan and H. J. Chung, Specific ion effects in polyampholyte hydrogels dialyzed in aqueous electrolytic solutions, Langmuir, 35 (2018) 1526–1533.

    Article  Google Scholar 

  33. M. E. Schroeder, K. M. Zurick, D. E. McGrath and M. T. Bernards, Multifunctional polyampholyte hydrogels with fouling resistance and protein conjugation capacity, Biomacromolecules, 14 (2013) 3112–3122.

    Article  Google Scholar 

  34. S. Van Helvert and P. Friedl, Strain stiffening of fibrillar collagen during individual and collective cell migration identified by AFM nanoindentation, ACS Applied Materials, 8 (2016) 21946–21955.

    Article  Google Scholar 

  35. D. V. Parshin, A. I. Lipovka, A. S. Yunoshev, K. S. Ovsyannikov, A. V. Dubovoy and A. P. Chupakhin, On the optimal choice of a hyperelastic model of ruptured and unruptured cerebral aneurys, Scientific Reports, 9 (2019) 1–11.

    Article  Google Scholar 

  36. M. Kirilova-Doneva, D. Pashkouleva and S. Stoytchev, Age-related changes in mechanical properties of human abdominal fascia, Medical Biological Engineering Computing, 58(7) (2020) 1565–1573.

    Article  Google Scholar 

  37. Y. J. Liu, L. H. Fu, S. Liu, L. Y. Meng, Y. Y. Li and M. G. Ma, Synthetic self-assembled homogeneous network hydrogels with high mechanical and recoverable properties for tissue replacement, Journal of Materials Chemistry B, 4 (2016) 4847–4854.

    Article  Google Scholar 

  38. D. Rüdiger, K. Kick, A. Goychuk, A. M. Vollmar, E. Frey and S. Zahler, Cell based strain stiffening of a non-fibrous matrix as organizing principle for morphogenesis, Cell Reports, 32(6) (2020) 108015.

    Article  Google Scholar 

  39. V. F. Fiore, S. S. Wong, C. Tran, C. Tan, W. Xu, T. Sulchek, E. S. White, J. S. Hagood and T. H. Barker, αvβ3 integrin drives fibroblast contraction and strain stiffening of soft provisional matrix during progressive fibrosis, JCI Insight, 3(20) (2018) e97597.

    Article  Google Scholar 

  40. F. Eskandari, M. Shafieian, M. M. Aghdam and K. Laksari, Tension strain-softening and compression strain-stiffening behavior of brain white matter, Annals of Biomedical Engineering, 49 (2021) 276–286.

    Article  Google Scholar 

Download references

Acknowledgments

The research was supported by the Ministry of Science and Technology, Taiwan [MOST109-2221-E-110-023].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Chih Lin.

Additional information

Gustini is currently a Ph.D. student at the National Sun Yat-sen University, Taiwan. Her research interests include development and application in bioengineering and biomedical.

Wei-Chih Lin is currently an Associate Professor with the National Sun Yat-sen University, Taiwan. His Ph.D. is from Cambridge University, UK. His research interests include development and application in bio-engineering, biomedical and agriculture machinery.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gustini, Lin, WC. Characterizations of the strain-stiffening property and cytotoxicity in the self-assembled polyampholyte hydrogel. J Mech Sci Technol 36, 2653–2661 (2022). https://doi.org/10.1007/s12206-022-0446-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-022-0446-6

Keywords

Navigation