Skip to main content
Log in

Artificial intelligence enabled smart machining and machine tools

  • Invited Review Article
  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

Artificial intelligence (AI) in machine tools offers diverse advantages, including learning and optimizing machining processes, compensating errors, saving energy, and preventing failures. Various AI techniques have been proposed and applied; however, many challenges still exist that inhibit the use of AI for machining tasks. This paper deals with different types and usage of AI technologies in machining operations such as predictive modelling, parameter optimization and control, chatter stability, tool wear, and energy conservation. We discuss the challenges of AI technologies, such as data quality, transferability, explainability, and suggest future directions to overcome them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Geissbauer, S. Schrauf, P. Berttram and F. Cheraghi, Digital Factories 2020 Shaping the Future of Manufacturing, Pricewaterhouse Coopers, Germany (2017).

    Google Scholar 

  2. M. Wetmore, Industry 4.0: an Opportunity to Shine for Canadian Manufacturers, Pricewaterhouse Coopers, Canada (2016).

    Google Scholar 

  3. A. Iqbal, G. Zhao, H. Suhaimi, N. He, G. Hussain and W. Zhao, Readiness of subtractive and additive manufacturing and their sustainable amalgamation from the perspective of Industry 4.0: a comprehensive review, The International Journal of Advanced Manufacturing Technology, 111 (2020) 2475–2498.

    Article  Google Scholar 

  4. S. Jr. Kline, 2020 Capital Spending Machine Tools Survey, Gardner Intelligence, USA (2020).

    Google Scholar 

  5. H. Hassani, E. S. Silva, S. Unger, M. Tajmazinani and S. MacFeely, Artificial intelligence (AI) or intelligence augmentation (IA): what is the future, AI, 1 (2) (2020) 143–155.

    Article  Google Scholar 

  6. J. Johnson, 4 Types of AI, BMC, Houston, Texas, USA (2020).

    Google Scholar 

  7. M. I. Jordan and T. M. Mitchell, Review-machine learning: trends, perspectives, and prospects, Science (Special Section: Artificial Intelligence), 349 (6245) (2015) 255–260.

    MATH  Google Scholar 

  8. K. Xia, C. Sacco, M. Kirkpatrick, C. Saidy, L. Nguyen, A. Kircaliali and R. Harik, A digital twin to train deep reinforcement learning agent for smart manufacturing plants: Environment, interfaces, and intelligence, Journal of Manufacturing Systems, 58 (B) (2021) 210–230.

    Article  Google Scholar 

  9. M. Matulis and C. Harvey, A robot arm digital twin utilizing reinforcement learning, Computers and Graphics, 95 (2021) 106–114.

    Article  Google Scholar 

  10. G. E. Hinton, S. Osindero and Y. Teh, A fast learning algorithm for deep belief nets, Neural Computation, 18 (7) (2006) 1527–1554.

    Article  MathSciNet  MATH  Google Scholar 

  11. D. H. Kim, T. J. Y. Kim, X. Wang, M. Kim, Y. J. Quan, J. W. Oh, S. H. Min, H. Kim, B. Bhandari, I. Yang and S. H. Ahn, Smart machining process using machine learning: A review and perspective on machining industry, International Journal of Precision Engineering and Manufacturing-Green Technology, 5 (2018) 555–568.

    Article  Google Scholar 

  12. C. W. Chang, H. W. Lee and C. H. Liu, A review of artificial intelligence algorithms used for smart machine tools, Inventions, 3 (3) (2018) 41.

    Article  Google Scholar 

  13. T. Wuest, D. Weimer, C. Irgens and K. D. Thoben, Machine learning in manufacturing: advantages, challenges, and applications, Production & Manufacturing Research, 4 (1) (2016) 23–45.

    Article  Google Scholar 

  14. G. Seif, The 5 Clustering Algorithms Data Scientists Need to Know, Towards Data Science, Canada (2018).

    Google Scholar 

  15. L. Maaten and G. Hinton, Visualizing data using t-SNE, Journal of Machine Learning Research, 9 (2008) 2579–2605.

    MATH  Google Scholar 

  16. Y. Altintas, Manufacturing Automation, 2nd Ed., Cambridge University Press, New York, USA (2012).

    Book  Google Scholar 

  17. H. Cherukuri, E. Perez-Bernabeu, M. Selles and T. Schmitz, Machining chatter prediction using a data learning model, Journal of Manufacturing Materials Processing, 3 (2) (2019) 45–59.

    Article  Google Scholar 

  18. J. Karandikar, A. Honeycutt, T. Schmitz and S. Smith, Stability boundary and optimal operating parameter identification in milling using Bayesian learning, Journal of Manufacturing Processes, 56 (B) (2020) 1252–1262.

    Article  Google Scholar 

  19. Y. Fu, Y. Zhang, H. Qiao, D. Li, H. Zhou and J. Leopold, Analysis of feature extracting ability for cutting state monitoring using deep belief networks, Procedia CIRP, 31 (2015) 29–34.

    Article  Google Scholar 

  20. M. Lamraoui, M. Barak, M. Thomas and M. El Badoui, Chatter detection in milling machines by neural network classification and feature selection, Journal of Vibration and Control, 21 (7) (2015) 1251–1266.

    Article  Google Scholar 

  21. Z. Yao, D. Mei and Z. Chen, On-line chatter detection and identification based on wavelet and support vector machine, Journal of Materials Processing Technology, 210 (5) (2010) 713–719.

    Article  Google Scholar 

  22. M. Tran, M. Liu and Q. Tran, Milling chatter detection using scalogram and deep convolutional neural network, The International Journal of Advanced Manufacturing Technology, 107 (2020) 1505–1516.

    Article  Google Scholar 

  23. D. Zhang, G. Bi, Z. Sun and Y. Guo, Online monitoring of precision optics grinding using acoustic emission based on support vector machine, International Journal of Advanced Manufacturing Technology, 80 (2015) 761–774.

    Article  Google Scholar 

  24. Y. Dun, L. Zhu, B. Yan and S. Wang, A chatter detection method in milling of thin-walled TC4 alloy workpiece based on auto-encoding and hybrid clustering, Mechanical Systems and Signal Processing, 158 (2021) 107755.

    Article  Google Scholar 

  25. M. C. Yesilli, F. A. Khasawneh and A. Otto, On transfer learning for chatter detection in turning using wavelet packet transform and ensemble empirical mode decomposition, CIRP Journal of Manufacturing Science and Technology, 28 (2020) 118–135.

    Article  Google Scholar 

  26. L. T. Tunc, Smart tool path generation for 5-axis ball-end milling of sculptured surfaces using process models, Robotics and Computer-Integrated Manufacturing, 56 (2019) 212–221.

    Article  Google Scholar 

  27. L. T. Tunc and M. Zatarain, Stability optimal selection of stock shape and tool axis in finishing of thin-wall parts, CIRP Annals, 68 (1) (2019) 401–404.

    Article  Google Scholar 

  28. S. Chao and Y. Altintas, Chatter free tool orientations in 5-axis ball-end milling, International Journal of Machine Tools and Manufacture, 106 (2016) 89–97.

    Article  Google Scholar 

  29. Y. Yuan, H. T. Zhang, Y. Wu, T. Zhu and H. Ding, Bayesian learning-based model-predictive vibration control for thin-walled workpiece machining processes, IEEE/ASME Transactions on Mechatronics, 22 (1) (2017) 509–520.

    Article  Google Scholar 

  30. Q. Guo, J. Yang and H. Wu, Application of ACO-BPN to thermal error modeling of NC machine tool, The International Journal of Advanced Manufacturing Technology, 50 (5–8) (2010) 667–675.

    Article  Google Scholar 

  31. J. Mayr, J. Jedrzejewski, E. Uhlmann, M. Alkan Donmez, W. Knapp, F. Härtig, K. Wendt, T. Moriwaki, P. Shore, R. Schmitt, C. Brecher, T. Würz and K. Wegener, Thermal issues in machine tools, CIRP Annals — Manufacturing Technology, 61 (2) (2012) 771–791.

    Article  Google Scholar 

  32. J. Vyroubal, Compensation of machine tool thermal deformation in spindle axis direction based on decomposition method, Precision Engineering, 36 (1) (2012) 121–127.

    Article  Google Scholar 

  33. B. Li, X. Tian and M. Zhang, Thermal error modeling of machine tool spindle based on the improved algorithm optimized BP neural network, The International Journal of Advanced Manufacturing Technology, 105 (1) (2019) 1497–1505.

    Article  Google Scholar 

  34. H. Wang, L. Wang, T. Li and J. Han, Thermal sensor selection for the thermal error modeling of machine tool based on the fuzzy clustering method, The International Journal of Advanced Manufacturing Technology, 69 (1–4) (2013) 121–126.

    Article  Google Scholar 

  35. M. Fujishima, K. Narimatsu, N. Irino, M. Mori and S. Ibaraki, Adaptive thermal displacement compensation method based on deep learning, CIRP Journal of Manufacturing Science and Technology, 25 (2019) 22–25.

    Article  Google Scholar 

  36. C. H. Lo, J. Yuan and J. Ni, Optimal temperature variable selection by grouping approach for thermal error modeling and compensation, International Journal of Machine Tools and Manufacture, 39 (9) (1999) 1383–1396.

    Article  Google Scholar 

  37. S. Yang, J. Yuan and J. Ni, The improvement of thermal error modeling and compensation on machine tools by CMAC neural network, International Journal of Machine Tools and Manufacture, 36 (4) (1996) 527–537.

    Article  Google Scholar 

  38. C. Ma, L. Zhao, X. Mei, H. Shi and J. Yang, Thermal error compensation based on genetic algorithm and artificial neural network of the shaft in the high-speed spindle system, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 231 (5) (2017) 753–767.

    Article  Google Scholar 

  39. C. Ma, L. Zhao, X. Mei, H. Shi and J. Yang, Thermal error compensation of high-speed spindle system based on a modified BP neural network, The International Journal of Advanced Manufacturing Technology, 89 (9–12) (2017) 3071–3085.

    Article  Google Scholar 

  40. Y. Zhang, J. Yang and H. Jiang, Machine tool thermal error modeling and prediction by grey neural network, The International Journal of Advanced Manufacturing Technology, 59 (9–12) (2012) 1065–1072.

    Article  Google Scholar 

  41. A. M. Abdulshahed, A. P. Longstaff, S. Fletcher and A. Potdar, Thermal error modelling of a gantry-type 5-axis machine tool using a grey neural network model, Journal of Manufacturing Systems, 41 (2016) 130–142.

    Article  Google Scholar 

  42. K. C. Wang, P. C. Tseng and K. M. Lin, Thermal error modeling of a machining center using grey system theory and adaptive network-based fuzzy inference system, International Journal Series C Mechanical Systems, Machine Elements and Manufacturing, 49 (4) (2006) 1179–1187.

    Google Scholar 

  43. A. M. Abdulshahed, A. P. Longstaff and S. Fletcher, A cuckoo search optimisation-based Grey prediction model for thermal error compensation on CNC machine tools, Grey Systems: Theory and Application, 7 (2) (2017) 146–155.

    Article  Google Scholar 

  44. P. Liu, Z. Du, H. Li, M. Deng, X. Feng and J. Yang, Thermal error modeling based on BiLSTM deep learning for CNC machine tool, Advanced Manufacturing, 9 (2021) 235–249.

    Article  Google Scholar 

  45. W. Chengyang, X. Sitong and X. Wansheng, Spindle thermal error prediction approach based on thermal infrared images: a deep learning method, Journal of Manufacturing Systems, 59 (2021) 67–80.

    Article  Google Scholar 

  46. K. Liu, L. Song, W. Han, Y. Cui and Y. Wang, Time-varying error prediction and compensation for movement axis of CNC machine tool based on digital twin, IEEE Transactions on Industrial Informatics, 18 (1) (2022) 109–117.

    Article  Google Scholar 

  47. J. Liu, H. Gui and C. Ma, Digital twin system of thermal error control for a large-size gear profile grinder enabled by gated recurrent unit, Journal of Ambient Intelligence and Humanized Computing (2021).

  48. Y. F. Li, X. X. Han and S. Y. Li, Non-contact dimension measurement of mechanical parts based on image processing, 8th International Congress on Image and Signal Processing (CISP), Shenyang, PRC (2015) 974–978.

  49. K. Khalili and M. Vahidnia, Improving the accuracy of crack length measurement using machine vision, Procedia Technology, 19 (2015) 48–55.

    Article  Google Scholar 

  50. Z. Wei, B. Zhang and P. Liu, Object dimension measurement based on mask R-CNN, 12th International Conference on Intelligent Robotics and Applications, Shenyang, PRC (4) (2019) 320–330.

  51. S. P. Lo, An adaptive-network based fuzzy inference system for prediction of workpiece surface roughness in end milling, Journal of Materials Processing Technology, 142 (2003) 665–675.

    Article  Google Scholar 

  52. W. H. Ho, J. T. Tsai, B. T. Lin and J. H. Chou, Adaptive network-based fuzzy inference system for prediction of surface roughness in end milling process using hybrid Taguchi-genetic learning algorithm, Expert Systems with Applications, 36 (2) (2009) 3216–3222.

    Article  Google Scholar 

  53. Z. Jurkovic, G. Cukor, M. Brezocnik and T. Brajkovic, A comparison of machine learning methods for cutting parameters prediction in high speed turning process, Journal of Intelligent Manufacturing, 29 (2018) 1683–1693.

    Article  Google Scholar 

  54. I. Svalina, G. Simunovic, T. Saric and R. Lujic, Evolutionary neuro-fuzzy system for surface roughness evaluation, Applied Soft Computing, 52 (2017) 593–604.

    Article  Google Scholar 

  55. L. C. Moreira, L. D. Li, X. Lu and M. E. Fitzpatrick, Supervision controller for real-time surface quality assurance in CNC machining using artificial intelligence, Computers & Industrial Engineering, 127 (2019) 158–168.

    Article  Google Scholar 

  56. R. H. Guerra, R. Quiza, A. Villalonga, J. Arenas and F. Castano, Digital twin-based optimization for ultraprecision motion systems with backlash and friction, IEEE Access, 7 (2019) 93462–93472.

    Article  Google Scholar 

  57. G. Kant and K. S. Sangwan, Predictive modelling and optimization of machining parameters to minimize surface roughness using artificial neural network coupled with genetic algorithm, Procedia CIRP, 31 (2015) 453–458.

    Article  Google Scholar 

  58. S. Wang, X. Lu, X. X. Li and W. D. Li, A systematic approach of process planning and scheduling optimization for sustainable machining, Journal of Cleaner Production, 87 (2015) 914–929.

    Article  Google Scholar 

  59. J. Lipski and K. Zaleski, Implementation of artificial intelligence in optimization of technological processes, MATEC Web of Conferences, 252 (2019) 03008.

    Article  Google Scholar 

  60. D. Karayel, Prediction and control of surface roughness in CNC lathe using artificial neural network, Journal of Materials Processing Technology, 209 (7) (2009) 3125–3137.

    Article  Google Scholar 

  61. U. Zuperl, F. Cus and M. Reibenschuh, Modeling and adaptive force control of milling by using artificial techniques, Journal of Intelligent Manufacturing, 23 (5) (2012) 1805–1815.

    Article  Google Scholar 

  62. U. Zuperl and F. Cus, Surface roughness fuzzy inference system within the control simulation of end milling, Precision Engineering, 43 (2016) 530–543.

    Article  Google Scholar 

  63. E. Ülker, M. E. Turanalp and H. S. Halkaci, An artificial immune system approach to CNC tool path generation, Journal of Intelligent Manufacturing, 20 (1) (2009) 67–77.

    Article  Google Scholar 

  64. H. El-Mounayri and H. Deng, A generic and innovative approach for integrated simulation and optimisation of end milling using solid modelling and neural network, International Journal of Computer Integrated Manufacturing, 23 (1) (2010) 40–60.

    Article  Google Scholar 

  65. J. Balic and M. Korosec, Intelligent tool path generation for milling of free surfaces using neural networks, International Journal of Machine Tools and Manufacture, 42 (10) (2002) 1171–1179.

    Article  Google Scholar 

  66. H. Ghaiebi and M. Solimanpur, An ant algorithm for optimization of hole-making operations, Computers & Industrial Engineering, 52 (2) (2007) 308–319.

    Article  Google Scholar 

  67. A. T. Abbas, M. F. Aly and K. Hamza, Optimum drilling path planning for a rectangular matrix of holes using ant colony optimization, International Journal of Production Research, 49 (19) (2011) 5877–5891.

    Article  Google Scholar 

  68. B. Li, H. Zhang, P. Ye and J. Wang, Trajectory smoothing method using reinforcement learning for computer numerical control machine tools, Robotics and Computer-Integrated Manufacturing, 61 (2020) 101847.

    Article  Google Scholar 

  69. B. Denkena, E. Abele, C. Brecher, M. A. Dittrich, S. Kara and M. Mori, Energy efficient machine tools, CIRP Annals-Manufacturing Technology, 69 (2020) 646–667.

    Article  Google Scholar 

  70. Okuma America Corporation, Energy-Efficient Machine Tool Technologies, For Any Size Shop [White paper], Charlotte, North Carolina, USA (2015).

  71. A. Vijayaraghavan and D. Dornfeld, Automated energy monitoring of machine tools, CIRP Annals, 59 (1) (2010) 21–24.

    Article  Google Scholar 

  72. G. Y. Zhao, Z. Y. Liu, Y. He, H. J. Cao and Y. B. Guo, Energy consumption in machining: classification, prediction, and reduction strategy, Energy, 133 (2017) 142–157.

    Article  Google Scholar 

  73. N. Sihag and K. S. Sangwan, A systematic literature review on machine tool energy consumption, Journal of Cleaner Production, 275 (2020) 123125.

    Article  Google Scholar 

  74. G. Kant and K. S. Sangwan, Predictive modelling for energy consumption in machining using artificial neural network, Procedia CIRP, 37 (2015) 205–210.

    Article  Google Scholar 

  75. G. Zhao, Q. Zhao, G. Zheng and J. Zhai, Specific energy consumption prediction method based on machine tool power measurement, Sensors & Transducers, 174 (2014) 115–122.

    Google Scholar 

  76. X. Zhang, Q. Zhu, Y. He and Y. Xu, Energy modeling using an effective latent variable based functional link learning machine, Energy, 162 (2018) 883–891.

    Article  Google Scholar 

  77. Z. Liu, X. Wang, Q. Zhang and C. Huang, Empirical mode decomposition based hybrid ensemble model for electrical energy consumption forecasting of the cement grinding process, Measurement, 138 (2019) 314–324.

    Article  Google Scholar 

  78. R. Ak, M. M. Helu and S. Rachuri, Ensemble neural network model for predicting the energy consumption of a milling machine, Proceedings of the ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Boston, Massachusetts, USA (2015) 1–7.

  79. Q. Xiao, C. Li, Y. Tang, Y. Du and Y. Kou, Deep learning based modeling for cutting energy consumed in CNC turning process, Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, Miyazaki, Japan (2018) 1398–1403.

  80. Z. W. Zhang, R. Z. Tang, T. Peng, L. Y. Tao and S. Jia, A method for minimizing the energy consumption of machining system: integration of process planning and scheduling, Journal of Cleaner Production, 137 (2016) 1647–1662.

    Article  Google Scholar 

  81. D. Flum, J. Sossenheimer, C. Stück and E. Abele, Towards energy-efficient machine tools through the development of the twin-control energy efficiency module, M. Armendia, M. Ghassempouri, E. Ozturk, and F. Peysson (Eds.), Twin-Control, Springer, Cham, Switzerland (2019) 95–108.

    Chapter  Google Scholar 

  82. The British Standards Institution, BS EN 13306, Maintenance — Maintenance Terminology, London, UK (2010).

  83. M. Rausand and A. Hoyland, System Reliability Theory: Models, Statistical Methods, and Applications, John Wiley & Sons, Hoboken, New Jersey, USA, 396 (2003).

    MATH  Google Scholar 

  84. C. Okoh, R. Roy and J. Mehnen, Predictive maintenance modelling for through-life engineering services, Procedia CIRP, 59 (2017) 196–201.

    Article  Google Scholar 

  85. G. W. Vogl, B. A. Weiss and M. Helu, A review of diagnostic and prognostic capabilities and best practices for manufacturing, Journal of Intelligent Manufacturing, 30 (1) (2019) 79–95.

    Article  Google Scholar 

  86. C. Ly, K. Tom, C. S. Byington, R. Patrick and G. J. Vachtsevanos, Fault diagnosis and failure prognosis for engineering systems: a global perspective, 2009 IEEE International Conference on Automation Science and Engineering, Bengalore, India (2009) 108–115.

  87. International Standards Organization, ISO 13381-1, Condition Monitoring and Diagnostics of Machines — Prognostics — Part 1: General Guidelines, Geneva, Switzerland (2004).

  88. H. M. Elattar, H. K. Elminir and A. M. Riad, Prognostics: a literature review, Complex & Intelligent Systems, 2 (2) (2016) 125–154.

    Article  Google Scholar 

  89. L. Liao and F. Köttig, Review of hybrid prognostics approaches for remaining useful life prediction of engineered systems, and an application to battery life prediction, IEEE Transactions on Reliability, 63 (1) (2014) 191–207.

    Article  Google Scholar 

  90. H. Hanachi, W. Yu, I. Y. Kim, J. Liu and C. K. Mechefske, Hybrid data-driven physics-based model fusion framework for tool wear prediction, The International Journal of Advanced Manufacturing Technology, 101 (9) (2019) 2861–2872.

    Article  Google Scholar 

  91. J. Caldeirani Filho and A. E. Diniz, Influence of cutting conditions on tool life, tool wear and surface finish in the face milling process, Journal of the Brazilian Society of Mechanical Sciences, 24 (2002) 10–14.

    Article  Google Scholar 

  92. X. Cui, J. Zhao and Y. Dong, The effects of cutting parameters on tool life and wear mechanisms of CBN tool in high-speed face milling of hardened steel, The International Journal of Advanced Manufacturing Technology, 66 (5) (2013) 955–964.

    Article  Google Scholar 

  93. D. A. Stephenson and J. S. Agapiou, Metal Cutting Theory and Practice, CRC Press, Boca Ranton, Florida, USA (2006).

    Google Scholar 

  94. Y. Zhou and W. Xue, Review of tool condition monitoring methods in milling processes, The International Journal of Advanced Manufacturing Technology, 96 (5) (2018) 2509–2523.

    Article  Google Scholar 

  95. G. Serin, B. Sener, A. M. Ozbayoglu and H. O. Unver, Review of tool condition monitoring in machining and opportunities for deep learning, The International Journal of Advanced Manufacturing Technology, 109 (3) (2020) 953–974.

    Article  Google Scholar 

  96. Y. Zhang, K. Zhu, X. Duan and S. Li, Tool wear estimation and life prognostics in milling: Model extension and generalization, Mechanical Systems and Signal Processing, 155 (2021) 107617.

    Article  Google Scholar 

  97. G. Xu, M. Liu, J. Wang, Y. Ma, J. Wang, F. Li and W. Shen, Data-driven fault diagnostics and prognostics for predictive maintenance: a brief overview, IEEE 15th International Conference on Automation Science and Engineering (CASE), Vancouver, BC, Canada (2019) 103–108.

  98. Y. Lei, N. Li, L. Guo, N. Li, T. Yan and J. Lin, Machinery health prognostics: a systematic review from data acquisition to RUL prediction, Mechanical Systems and Signal Processing, 104 (2018) 799–834.

    Article  Google Scholar 

  99. M. Liu, X. Yao, J. Zhang, W. Chen, X. Jing and K. Wang, Multi-sensor data fusion for remaining useful life prediction of machining tools by IABC-BPNN in dry milling operations, Sensors, 20 (17) (2020) 4657.

    Article  Google Scholar 

  100. W. H. Hsieh, M. C. Lu and S. J. Chiou, Application of back-propagation neural network for spindle vibration-based tool wear monitoring in micro-milling, The International Journal of Advanced Manufacturing Technology, 61 (2012) 53–61.

    Article  Google Scholar 

  101. S. Shankar, T. Mohanraj and R. Rajasekar, Prediction of cutting tool wear during milling process using artificial intelligence techniques, International Journal of Computer Integrated Manufacturing, 32 (2) (2019) 174–182.

    Article  Google Scholar 

  102. Y. Zhou, B. Sun, W. Sun and Z. Lei, Tool wear condition monitoring based on a two-layer angle kernel extreme learning machine using sound sensor for milling process, Journal of Intelligent Manufacturing (2020).

  103. R. Teti, K. Jemielniak, G. O’donnell and D. Dornfeld, Advanced monitoring of machining operations, CIRP Annals, 59 (2) (2010) 717–739.

    Article  Google Scholar 

  104. M. Kuntoglu, A. Aslan, D. Y. Pimenov, U. A. Usca, E. Salur, M. K. Gupta, T. Mikolajczyk, K. Giasin, W. Kaplonek and S. Sharma, A review of indirect tool condition monitoring systems and decision-making methods in turning: critical analysis and trends, Sensors, 21 (1) (2021) 108.

    Article  Google Scholar 

  105. B. Cuka and D. W. Kim, Fuzzy logic based tool condition monitoring for end-milling, Robotics and Computer-Integrated Manufacturing, 47 (2017) 22–36.

    Article  Google Scholar 

  106. T. Mohanraj, S. Shankar, R. Rajasekar, N. R. Sakthivel and A. Pramanik, Tool condition monitoring techniques in milling process — a review, Journal of Materials Research and Technology, 9 (1) (2020) 1032–1042.

    Article  Google Scholar 

  107. K. Zhu, Y. S. Wong and G. S. Hong, Wavelet analysis of sensor signals for tool condition monitoring: a review and some new results, International Journal of Machine Tools and Manufacture, 49 (7) (2009) 537–553.

    Article  Google Scholar 

  108. D. D’Addona, T. Segreto, A. Simeone and R. Teti, ANN tool wear modelling in the machining of nickel superalloy industrial products, CIRP Journal of Manufacturing Science and Technology, 4 (1) (2011) 33–37.

    Article  Google Scholar 

  109. R. H. L. da Silva, M. B. da Silva and A. Hassui, A probabilistic neural network applied in monitoring tool wear in the end milling operation via acoustic emission and cutting power signals, Machining Science and Technology, 20 (3) (2016) 386–405.

    Article  Google Scholar 

  110. A. Gouarir, G. Martinez-Arellano, G. Terrazas, P. Bernados and S. Ratchev, In-process tool wear prediction system based on machine learning techniques and force analysis, Procedia CIRP, 77 (2018) 501–504.

    Article  Google Scholar 

  111. W. Cai, W. Zhang, X. Hu and Y. Liu, A hybrid information model based on long short-term memory network for tool condition monitoring, Journal of Intelligent Manufacturing, 31 (2020) 1497–1510.

    Article  Google Scholar 

  112. C. Zhang, X. Yao, J. Zhang and H. Jin, Tool condition monitoring and remaining useful life prognostic based on a wireless sensor in dry milling operations, Sensors, 16 (6) (2016) 795.

    Article  Google Scholar 

  113. L. Xu, C. Huang, C. Li, J. Wang, H. Liu and X. Wang, Estimation of tool wear and optimization of cutting parameters based on novel ANFIS-PSO method toward intelligent machining, Journal of Intelligent Manufacturing, 32 (2021) 77–90.

    Article  Google Scholar 

  114. A. J. Torabi, M. J. Er, X. Li, B. S. Lim and G. O. Peen, Application of clustering methods for online tool condition monitoring and fault diagnosis in high-speed milling processes, IEEE Systems Journal, 10 (2) (2016) 721–732.

    Article  Google Scholar 

  115. P. Stavropoulos, A. Papacharalampopoulos, E. Vasiliadis and G. Chryssolouris, Tool wear predictability estimation in milling based on multi-sensorial data, The International Journal of Advanced Manufacturing Technology, 82 (2016) 509–521.

    Article  Google Scholar 

  116. Q. Ren, L. Baron, M. Balazinski, R. Botez and P. Bigras, Tool wear assessment based on type-2 fuzzy uncertainty estimation on acoustic emission, Applied Soft Computing, 31 (2015) 14–24.

    Article  Google Scholar 

  117. V. Pandiyan, W. Caeserendra, T. Tjahjowidodo and H. H. Tan, In-process tool condition monitoring in compliant abrasive belt grinding process using support vector machine and genetic algorithm, Journal of Manufacturing Processes, 31 (2018) 199–213.

    Article  Google Scholar 

  118. B. Kaya, C. Oysu, H. M. Ertunc and H. Ocak, A support vector machine-based online tool condition monitoring for milling using sensor fusion and a genetic algorithm, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 226 (11) (2012) 1808–1818.

    Article  Google Scholar 

  119. T. Benkedjouh, K. Medjaher, N. Zerhouni and S. Rechak, Health assessment and life prediction of cutting tools based on support vector regression, Journal of Intelligent Manufacturing, 26 (2) (2015) 213–223.

    Article  Google Scholar 

  120. W. Li and T. Liu, Time varying and condition adaptive hidden Markov model for tool wear state estimation and remaining useful life prediction in micro-milling, Mechanical Systems and Signal Processing, 131 (2019) 689–702.

    Article  Google Scholar 

  121. M. Elangovan, K. I. Ramachandran and V. Sugumaran, Studies on Bayes classifier for condition monitoring of single point carbide tipped tool based on statistical and histogram features, Expert Systems with Applications, 37 (3) (2010) 2059–2065.

    Article  Google Scholar 

  122. S. Laddada, M. O. Si-Chaib, T. Benkedjouh and R. Drai, Tool wear condition monitoring based on wavelet transform and improved extreme learning machine, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 234 (5) (2019) 1057–1068.

    Google Scholar 

  123. W. Luo, T. Hu, Y. Ye, C. Zhang and Y. Wei, A hybrid predictive maintenance approach for CNC machine tool driven by digital twin, Robotics and Computer Integrated Manufacturing, 65 (2020) 101974.

    Article  Google Scholar 

  124. H. Saglam, Tool wear monitoring in bandsawing using neural networks and Taguchi’s design of experiments, The International Journal of Advanced Manufacturing Technology, 55 (2011) 969–982.

    Article  Google Scholar 

  125. D. Shi and N. Gindy, Tool wear predictive model based on least squares support vector machines, Mechanical Systems and Signal Processing, 21 (4) (2007) 1799–1814.

    Article  Google Scholar 

  126. W. Caesarendra, T. Triwiyanto, V. Pandiyan, A. Glowacz, S. D. H. Permana and T. Tjahjowidodo, A CNN prediction method for belt grinding tool wear in a polishing process utilizing 3-axes force and vibration data, Electronics, 10 (12) (2021) 1429.

    Article  Google Scholar 

  127. H. Oo, W. Wang and Z. Liu, Tool wear monitoring system in belt grinding based on image-processing techniques, The International Journal of Advanced Manufacturing Technology, 111 (2020) 2215–2229.

    Article  Google Scholar 

  128. A. Kumar, R. B. Chinnam and F. Tseng, An HMM and polynomial regression based approach for remaining useful life and health state estimation of cutting tools, Computers & Industrial Engineering, 128 (2019) 1008–1014.

    Article  Google Scholar 

  129. J. Dou, C. Xu, S. Jiao, B. Li, J. Zhang and X. Xu, An unsupervised online monitoring method for tool wear using a sparse auto-encoder, The International Journal of Advanced Manufacturing Technology, 106 (5) (2020) 2493–2507.

    Article  Google Scholar 

  130. I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, MIT Press, Cambridge, Massachusetts, USA (2016).

    MATH  Google Scholar 

  131. G. Press, Cleaning big data: most time-consuming, least enjoyable data science task, survey says, Forbes (2016).

  132. C. Lin, T. Chen, L. Wang and H. Shuai, Health-based fault generative adversarial network for fault diagnosis in machine tools, Artificial Intelligence of Things Workshop in Association for the Advancement of Artificial Intelligence Conference, New York, USA (2020).

  133. G. Chhabra, V. Vashisht and J. Ranjan, A review on missing data value estimation using imputation algorithm, Journal of Advanced Research in Dynamical and Control Systems, 11 (7) (2019) 312–318.

    Google Scholar 

  134. S. Han, H. J. Choi, S. K. Choi and J. S. Oh, Fault diagnosis of planetary gear carrier packs: A class imbalance and multi-class classification problem, International Journal of Precision Engineering and Manufacturing, 20 (2019) 167–179.

    Article  Google Scholar 

  135. B. Roy, All About Feature Scaling, Towards Data Science, Canada (2020).

    Google Scholar 

  136. S. Shao, S. McAleer, R. Yan and P. Baldi, Highly accurate machine fault diagnosis using deep transfer learning, IEEE Transactions on Industrial Informatics, 15 (4) (2019) 2446–2455.

    Article  Google Scholar 

  137. F. Yang, W. Zhang, L. Tao and J. Ma, Transfer learning strategies for deep learning-based PHM algorithms, Applied Sciences, 10 (7) (2020) 2361.

    Article  Google Scholar 

  138. P. Cao, S. Zhang and J. Tang, Preprocessing-free gear fault diagnosis using small datasets with deep convolutional neural network-based transfer learning, IEEE Access, 6 (2018) 26241–26253.

    Article  Google Scholar 

  139. R. Sawhney, Human in the Loop: Why We Will be Needed to Complement Artificial Intelligence, The London School of Economics and Political Science Business Review, London, UK (2018).

    Google Scholar 

  140. A. Widodo and B. S. Yang, Support vector machine in machine condition monitoring and fault diagnosis, Mechanical Systems and Signal Processing, 21 (6) (2007) 2560–2574.

    Article  Google Scholar 

  141. J. Chen, P. Hu, H. Zhou, J. Yang, J. Xie, Y. Jiang, Z. Gao and C. Zhang, Toward intelligent machine tool, Engineering, 5 (4) (2019) 679–690.

    Article  Google Scholar 

  142. Z. H. Zhou, Machine learning challenges and impact: an interview with Thomas Dietterich, National Science Review, 5 (1) (2018) 54–58.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the MSIT (Ministry of Science, ICT), Korea, under the High-Potential Individuals Global Training Program (2020-0-01529) supervised by the IITP (Institute for Information & Communications Technology Planning & Evaluation), and by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2018R1A2A1A05079477).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon S. Park.

Additional information

Simon S. Park is a Professor at the Schulich School of Engineering, Dept. of Mechanical and Manufacturing Engineering, University of Calgary, Canada. He was an AITF iCORE Chair in sensing and monitoring. He is a professional engineer in Alberta and is an associate member of CIRP (Int. Academy of Production Engineers) from Canada. Dr. Park received bachelor and master’s degrees from the University of Toronto, Canada. He then continued his Ph.D. at the University of British Columbia, Canada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chuo, Y.S., Lee, J.W., Mun, C.H. et al. Artificial intelligence enabled smart machining and machine tools. J Mech Sci Technol 36, 1–23 (2022). https://doi.org/10.1007/s12206-021-1201-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-021-1201-0

Keywords

Navigation