Skip to main content

Review of the binary mixture droplet evaporation studies

Abstract

Understanding the evaporation characteristics of sessile binary mixture droplets (BMDs) is crucial in various industries, such as surface coating, ink-jet printing, evaporators, fuel combustion, and medical diagnosis. The underlying physics of BMDs has not yet been fully explored despite numerous prior studies. This paper reviews the recent studies on evaporating BMD and examines various studied and unaddressed issues. First, we introduce measurement techniques to estimate time-varying mixture concentrations of BMDs during evaporation. Next, the theoretical models that have been developed to predict selective evaporation dynamics of BMDs are reviewed and summarized. Finally, this paper reviews the recent studies that have examined the three distinct stages of the contact line motion and internal flows of BMDs.

This is a preview of subscription content, access via your institution.

Abbreviations

c :

Ethanol concentration

D :

Diffusion coefficient

H :

Relative humidity

i :

Evaporation rage of i-th component

J d,I :

Diffusive evaporation flux of i-th component

P :

Legendre function

r :

Radial coordinate

R :

Contact radius

t :

Time

α :

Theraml diffusivity

θ :

Contact angle

ρ :

Density

References

  1. H. Kim, F. Boulogne, E. Um, I. Jacobi, E. Button and H. A. Stone, Controlled uniform coating from the interplay of Marangoni flows and surface-adsorbed macromolecules, Phys. Rev. Lett., 116 (12) (2016).

  2. N. Jung, H. W. Seo, P. H. Leo, J. Kim, P. Kim and C. S. Yoo, Surfactant effects on droplet dynamics and deposition patterns: a lattice gas model, Soft Matter, 13 (37) (2017) 6529–6541.

    Article  Google Scholar 

  3. Y. O. Popov, Evaporative deposition patterns: spatial dimensions of the deposit, Phys. Rev. E, 71 (3) (2005).

  4. R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel and T. A. Witten, Contact line deposits in an evaporating drop, Phys. Rev. E, 62 (1) (2000) 756–765.

    Article  Google Scholar 

  5. M. Parsa, R. Boubaker, S. Harmand, K. Sefiane, M. Bigerelle and R. Deltombe, Patterns from dried water-butanol binary-based nanofluid drops, J. Nanopart Res., 19 (8) (2017).

  6. X. Zhong and F. Duan, Flow regime and deposition pattern of evaporating binary mixture droplet suspended with particles, Eur. Phys. J. E, 39 (2) (2016).

  7. L. Bansal, P. Seth, B. Murugappan and S. Basu, Suppression of coffee ring: (particle) size matters, Appl. Phys. Lett., 112 (21) (2018).

  8. D. Mampallil, J. Reboud, R. Wilson, D. Wylie, D. R. Klug and J. M. Cooper, Acoustic suppression of the coffee-ring effect, Soft Matter, 11 (36) (2015) 7207–7213.

    Article  Google Scholar 

  9. Y. Cai and B. M. Z. Newby, Marangoni flow-induced self-assembly of hexagonal and stripelike nanoparticle patterns, J. Am. Chem. Soc., 130 (19) (2008) 6076.

    Article  Google Scholar 

  10. H. Hu and R. G. Larson, Marangoni effect reverses coffee-ring depositions, J. Phys. Chem. B, 110 (14) (2006) 7090–7094.

    Article  Google Scholar 

  11. E. L. Talbott, H. N. Yow, L. S. Yang, A. Berson, S. R. Biggs and C. D. Bain, Printing small dots from large drops, Acs. Appl. Mater Inter., 7 (6) (2015) 3782–3790.

    Article  Google Scholar 

  12. M. Singh, H. M. Haverinen, P. Dhagat and G. E. Jabbour, Inkjet printing-process and its applications, Adv. Mater, 22 (6) (2010) 673–685.

    Article  Google Scholar 

  13. H. Rijckaert et al., Superconducting HfO2-YBa2Cu3O7-delta nanocomposite films deposited using ink-jet printing of colloidal solutions, Coatings, 10 (1) (2020).

  14. G. Strotos, I. Malgarinos, N. Nikolopoulos and M. Gavaises, Predicting the evaporation rate of stationary droplets with the VOF methodology for a wide range of ambient temperature conditions, Int. J. Therm Sci., 109 (2016) 253–262.

    Article  Google Scholar 

  15. F. Ozkan, A. Wenka, E. Hansjosten, P. Pfeifer and B. Kraushaar-Czarnetzki, Numerical investigation of interfacial mass transfer in two phase flows using the VOF method, Eng. Appl. Comp. Fluid., 10 (1) (2016) 100–110.

    Google Scholar 

  16. G. Strotos, M. Gavaises, A. Theodorakakos and G. Bergeles, Numerical investigation of the evaporation of two-component droplets, Fuel, 90 (4) (2011) 1492–1507.

    Article  MATH  Google Scholar 

  17. A. K. Agarwal, Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines, Prog. Energ. Combust., 33 (3) (2007) 233–271.

    Article  Google Scholar 

  18. N. D. Patil, R. Bhardwaj and A. Sharma, Self-sorting of bidispersed colloidal particles near contact line of an evaporating sessile droplet, Langmuir, 34 (40) (2018) 12058–12070.

    Article  Google Scholar 

  19. T. S. Wong, T. H. Chen, X. Y. Shen and C. M. Ho, Nanochromatography driven by the coffee ring effect, Anal. Chem., 83 (6) (2011) 1871–1873.

    Article  Google Scholar 

  20. L. Bahmani, M. Neysari and M. Maleki, The study of drying and pattern formation of whole human blood drops and the effect of thalassaemia and neonatal jaundice on the patterns, Colloid Surface A, 513 (2017) 66–75.

    Article  Google Scholar 

  21. M. O. Kokornaczyk, G. Dinelli, I. Marotti, S. Benedettelli, D. Nani and L. Betti, Self-organized crystallization patterns from evaporating droplets of common wheat grain leakages as a potential tool for quality analysis, The Scientific World Journal, 11 (2011) 1712–1725.

    Article  Google Scholar 

  22. D. Brutin and V. Starov, Recent advances in droplet wetting and evaporation, Chem. Soc. Rev., 47 (2) (2018) 558–585.

    Article  Google Scholar 

  23. D. Y. Zang, S. Tarafdar, Y. Y. Tarasevich, M. D. Choudhury and T. Dutta, Evaporation of a droplet: from physics to applications, Phys. Rep., 804 (2019) 1–56.

    Article  MathSciNet  Google Scholar 

  24. K. Sefiane, Patterns from drying drops, Adv. Colloid Interfac, 206 (2014) 372–381.

    Article  Google Scholar 

  25. D. Bonn, J. Eggers, J. Indekeu, J. Meunier and E. Rolley, Wetting and spreading, Rev. Mod. Phys., 81 (2) (2009) 739–805.

    Article  Google Scholar 

  26. C. Zhang, J. W. Palko, M. T. Barako, M. Asheghi, J. G. Santiago and K. E. Goodson, Enhanced capillary-fed boiling in copper inverse opals via template sintering, Adv. Funct. Mater, 28 (41) (2018).

  27. H. Kim and H. A. Stone, Direct measurement of selective evaporation of binary mixture droplets by dissolving materials, J. Fluid. Mech., 850 (2018) 769–783.

    Article  MATH  Google Scholar 

  28. A. M. J. Edwards, P. S. Atkinson, C. S. Cheung, H. Liang, D. J. Fairhurst and F. F. Ouali, Density-driven flows in evaporating binary liquid droplets, Phys. Rev. Lett., 121 (18) (2018).

  29. C. H. Jeong, H. J. Lee, D. Y. Kim, S. B. Ahangar, C. K. Choi and S. H. Lee, Quantitative analysis of contact line behaviors of evaporating binary mixture droplets using surface plasmon resonance imaging, Int. J. Heat Mass Tran., 165 (2021) 120690.

    Article  Google Scholar 

  30. T. M. Koller, S. M. Yan, C. Steininger, T. Klein and A. P. Froba, Interfacial tension and liquid viscosity of binary mixtures of n-hexane, n-decane, or 1-hexanol with carbon dioxide by molecular dynamics simulations and surface light scattering, Int. J. Thermophys, 40 (8) (2019).

  31. S. Zhang, L. Zhao, X. Q. Yue, B. Li and J. B. Zhang, Density, viscosity, surface tension and spectroscopic studies for the liquid of mixture of tetraethylene glycol plus N,N-dimethyl-formamide at six temperatures, J. Mol. Liq., 264 (2018) 451–457.

    Article  Google Scholar 

  32. T. M. Koller et al., Liquid viscosity and surface tension of n-dodecane, n-octacosane, their mixtures, and a wax between 323 and 573 K by surface light scattering, J. Chem. Eng. Data, 62 (10) (2017) 3319–3333.

    Article  Google Scholar 

  33. S. Parez, G. Guevara-Carrion, H. Hasse and J. Vrabec, Mutual diffusion in the ternary mixture of water plus methanol plus ethanol and its binary subsystems, Phys. Chem. Chem. Phys., 15 (11) (2013) 3985–4001.

    Article  Google Scholar 

  34. I. S. Khattab, F. Bandarkar, M. A. A. Fakhree and A. Jouyban, Density, viscosity, and surface tension of water plus ethanol mixtures from 293 to 323 K, Korean J. Chem. Eng., 29 (6) (2012) 812–817.

    Article  Google Scholar 

  35. S. X. Song and C. S. Peng, Viscosities of binary and ternary mixtures of water, alcohol, acetone, and hexane, J. Disper. Sci. Technol., 29 (10) (2008) 1367–1372.

    Article  Google Scholar 

  36. J. H. Guo et al., Molecular structure of alcohol-water mixtures, Phys. Rev. Lett., 91 (15) (2003).

  37. R. C. Pemberton and C. J. Mash, Thermodynamic properties of aqueous non-electrolyte mixtures. 2. vapor-pressures and excess Gibbs energies for water+ethanol at 303.15-K to 363.15-K determined by an accurate static method, J. Chem. Thermodyn., 10 (9) (1978) 867–888.

    Article  Google Scholar 

  38. S. G. D’Avila and R. S. F. Silva, Isothermal vapor-liquid equilibrium data by total pressure method. Systems acetaldehyde-ethanol, acetaldehyde-water, and ethanol-water, Journal of Chemical and Engineering Data, 15 (3) (1970) 421–424.

    Article  Google Scholar 

  39. H. J. Lee, C. H. Jeong, D. Y. Kim, C. K. Choi and S. H. Lee, Solid-liquid interface temperature measurement of evaporating droplet using thermoresponsive polymer aqueous solution, Applied Sciences, 11 (8) (2021) 3379.

    Article  Google Scholar 

  40. D. Y. Kim, C. H. Jeong, H. J. Lee, C. K. Choi and S. H. Lee, Modeling of the finite boundary limit of evaporation flux in the contact line region using the surface plasmon resonance imaging, Int. Commun. Heat Mass, 116 (2020).

  41. S. B. Ahangar, C. H. Jeong, F. Long, J. S. Allen, S. H. Lee and C. K. Choi, The effect of adsorbed volatile organic compounds on an ultrathin water film measurement, Appl. Sci.-Basel, 10 (17) (2020).

  42. C. H. Jeong, D. H. Shin, V. Konduru, J. S. Allen, C. K. Choi and S. H. Lee, Quantitative measurements of nanoscale thin frost layers using surface plasmon resonance imaging, Int. J. Heat Mass Tran., 124 (2018) 83–89.

    Article  Google Scholar 

  43. C. H. Jeong, S. H. Lee, D. H. Shin, V. Konduru, J. S. Allen and C. K. Choi, High speed SPR visualization of frost propagation inside a subcooled water droplet, Journal of Heat Transfer, 139 (2) (2017).

  44. P. L. Kelly-Zion, C. J. Pursell, G. N. Wassom, B. V. Mandelkorn and C. Nkinthorn, Correlation for sessile drop evaporation over a wide range of drop volatilities, ambient gases and pressures, Int. J. Heat Mass Tran., 118 (2018) 355–367.

    Article  Google Scholar 

  45. S. F. Chini and A. Amirfazli, Resolving an ostensible inconsistency in calculating the evaporation rate of sessile drops, Adv. Colloid Interfac, 243 (2017) 121–128.

    Article  Google Scholar 

  46. F. Carle, S. Semenov, M. Medale and D. Brutin, Contribution of convective transport to evaporation of sessile droplets: empirical model, Int. J. Therm. Sci., 101 (2016) 35–47.

    Article  Google Scholar 

  47. P. L. Kelly-Zion, J. Batra and C. J. Pursell, Correlation for the convective and diffusive evaporation of a sessile drop, Int. J. Heat Mass Tran., 64 (2013) 278–285.

    Article  Google Scholar 

  48. B. Sobac and D. Brutin, Thermal effects of the substrate on water droplet evaporation, Phys. Rev. E, 86 (2) (2012).

  49. K. Sefiane and R. Bennacer, An expression for droplet evaporation incorporating thermal effects, J. Fluid Mech., 667 (2011) 260–271.

    Article  MATH  Google Scholar 

  50. P. L. Kelly-Zion, C. J. Pursell, S. Vaidya and J. Batra, Evaporation of sessile drops under combined diffusion and natural convection, Colloid Surface A, 381 (1–3) (2011) 31–36.

    Article  Google Scholar 

  51. M. A. Saada, S. Chikh and L. Tadrist, Numerical investigation of heat and mass transfer of an evaporating sessile drop on a horizontal surface, Phys. Fluids, 22 (11) (2010).

  52. G. J. Dunn, S. K. Wilson, B. R. Duffy, S. David and K. Sefiane, The strong influence of substrate conductivity on droplet evaporation, J. Fluid Mech., 623 (2009) 329–351.

    Article  MATH  Google Scholar 

  53. S. M. Bower and J. R. Saylor, A study of the Sherwood-Rayleigh relation for water undergoing natural convection-driven evaporation, Int. J. Heat Mass Tran., 52 (13–14) (2009) 3055–3063.

    Article  Google Scholar 

  54. H. Hu and R. G. Larson, Evaporation of a sessile droplet on a substrate, J. Phys. Chem. B, 106 (6) (2002) 1334–1344.

    Article  Google Scholar 

  55. C. H. Jeong, H. J. Lee, C. K. Choi and S. H. Lee, Selective evaporation rate modeling of volatile binary mixture droplets, Int. J. Heat Mass Tran., 178 (2021) 121584.

    Article  Google Scholar 

  56. M. Kolwas, D. Jakubczyk, T. D. Duc and J. Archer, Evaporation of a free microdroplet of a binary mixture of liquids with different volatilities, Soft Matter, 15 (8) (2019) 1825–1832.

    Article  Google Scholar 

  57. P. Gurrala, P. Katre, S. Balusamy, S. Banerjee and K. C. Sahu, Evaporation of ethanol-water sessile droplet of different compositions at an elevated substrate temperature, Int. J. Heat Mass Tran., 145 (2019).

  58. T. Ozturk and H. Y. Erbil, Simple model for diffusion-limited drop evaporation of binary liquids from physical properties of the components: ethanol-water example, Langmuir, 36 (5) (2020) 1357–1371.

    Article  Google Scholar 

  59. F. Carle, B. Sobac and D. Brutin, Experimental evidence of the atmospheric convective transport contribution to sessile droplet evaporation, Appl. Phys. Lett., 102 (6) (2013).

  60. P. L. Kelly-Zion, C. J. Pursell, N. Hasbamrer, B. Cardozo, K. Gaughan and K. Nickels, Vapor distribution above an evaporating sessile drop, Int. J. Heat Mass Tran., 65 (2013) 165–172.

    Article  Google Scholar 

  61. E. Dietrich, E. S. Kooij, X. H. Zhang, H. J. W. Zandvliet and D. Lohse, Stick-jump mode in surface droplet dissolution, Langmuir, 31 (16) (2015) 4696–4703.

    Article  Google Scholar 

  62. J. M. Stauber, S. K. Wilson, B. R. Duffy and K. Sefiane, On the lifetimes of evaporating droplets, J. Fluid Mech., 744 (2014).

  63. T. A. H. Nguyen and A. V. Nguyen, On the lifetime of evaporating sessile droplets, Langmuir, 28 (3) (2012) 1924–1930.

    Article  Google Scholar 

  64. J. M. Stauber, S. K. Wilson, B. R. Duffy and K. Sefiane, On the lifetimes of evaporating droplets with related initial and receding contact angles, Phys. Fluids, 27 (12) (2015).

  65. K. Sefiane, L. Tadrist and M. Douglas, Experimental study of evaporating water-ethanol mixture sessile drop: influence of concentration, Int. J. Heat Mass Tran., 46 (23) (2003) 4527–4534.

    Article  Google Scholar 

  66. P. Katre, P. Gurrala, S. Balusamy, S. Banerjee and K. C. Sahu, Evaporation of sessile ethanol-water droplets on a critically inclined heated surface, International Journal of Multiphase Flow, 131 (2020) 103368.

    Article  MathSciNet  Google Scholar 

  67. Y. Hamamoto, J. R. E. Christy and K. Sefiane, Order-of-magnitude increase in flow velocity driven by mass conservation during the evaporation of sessile drops, Phys. Rev. E, 83 (5) (2011).

  68. K. Sefiane, S. David and M. E. R. Shanahan, Wetting and evaporation of binary mixture drops, J. Phys. Chem. B, 112 (36) (2008) 11317–11323.

    Article  Google Scholar 

  69. J. R. E. Christy, Y. Hamamoto and K. Sefiane, Flow transition within an evaporating binary mixture sessile drop, Phys. Rev. Lett., 106 (20) (2011).

  70. R. Bennacer and K. Sefiane, Vortices, dissipation and flow transition in volatile binary drops, J. Fluid Mech., 749 (2014) 649–665.

    Article  Google Scholar 

  71. A. F. M. Leenaars, J. A. M. Huethorst and J. J. Vanoekel, Marangoni drying-a new extremely clean drying process, Langmuir, 6 (11) (1990) 1701–1703.

    Article  Google Scholar 

  72. S. Karpitschka, F. Liebig and H. Riegler, Marangoni contraction of evaporating sessile droplets of binary mixtures, Langmuir, 33 (19) (2017) 4682–4687.

    Article  Google Scholar 

  73. J. Marra and J. A. M. Huethorst, Physical principles of Marangoni drying, Langmuir, 7 (11) (1991) 2748–2755.

    Article  Google Scholar 

  74. O. K. Matar and R. V. Craster, Models for Marangoni drying, Phys. Fluids, 13 (7) (2001) 1869–1883.

    Article  MathSciNet  MATH  Google Scholar 

  75. V. Dugas, J. Broutin and E. Souteyrand, Droplet evaporation study applied to DNA chip manufacturing, Langmuir, 21 (20) (2005) 9130–9136.

    Article  Google Scholar 

  76. R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel and T. A. Witten, Capillary flow as the cause of ring stains from dried liquid drops, Nature, 389 (6653) (1997) 827–829.

    Article  Google Scholar 

  77. P. Chen, M. Toubal, J. Carlier, S. Harmand, B. Nongaillard and M. Bigerelle, Evaporation of binary sessile drops: infrared and acoustic methods to track alcohol concentration at the interface and on the surface, Langmuir, 32 (38) (2016) 9836–9845.

    Article  Google Scholar 

  78. C. J. Liu, E. Bonaccurso and H. J. Butt, Evaporation of sessile water/ethanol drops in a controlled environment, Phys. Chem. Chem. Phys., 10 (47) (2008) 7150–7157.

    Article  Google Scholar 

  79. Y. X. Li, C. Diddens, P. Y. Lv, H. Wijshoff, M. Versluis and D. Lohse, Gravitational effect in evaporating binary microdroplets, Phys. Rev. Lett., 122 (11) (2019).

  80. C. Diddens et al., Evaporating pure, binary and ternary droplets: thermal effects and axial symmetry breaking, J. Fluid Mech., 823 (2017) 470–497.

    Article  MathSciNet  MATH  Google Scholar 

  81. C. Diddens, J. G. M. Kuerten, C. W. M. van der Geld and H. M. A. Wijshoff, Modeling the evaporation of sessile multi-component droplets, J. Colloid Interf. Sci., 487 (2017) 426–436.

    Article  Google Scholar 

  82. K. H. Kang, S. J. Leel, C. M. Lee and I. S. Kang, Quantitative visualization of flow inside an evaporating droplet using the ray tracing method, Meas. Sci. Technol., 15 (6) (2004) 1104–1112.

    Article  Google Scholar 

  83. A. G. Marin, H. Gelderblom, D. Lohse and J. H. Snoeijer, Rush-hour in evaporating coffee drops, Phys. Fluids, 23 (9) (2011).

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No.NRF-2021R1A2C3014510), and it was also supported by the Chung-Ang University Research Grants in 2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong Hyuk Lee.

Additional information

Chan Ho Jeong received his B.S. and M.S. degrees from Chung-Ang University. He is currently a Ph.D. candidate in School of Mechanical Engineering at the Chung-Ang University. His research interests are visualization of phase-change phenomenon and computational fluid dynamics.

Hyung Ju Lee received his B.S. and M.S. degrees from Chung-Ang University. He is currently a Ph.D. candidate in School of Mechanical Engineering at the Chung-Ang University. His research interests are heat and mass transfer, multiphase flow, and computational fluid dynamics.

Chang Kyoung Choi received his B.S. and M.S. in Mechanical Engineering, Chung-Ang University in Korea and his Ph.D. in Mechanical Engineering, University of Tennessee at Knoxville. Dr. Choi is an Associate Professor of Mechanical Engineering-Engineering Mechanics at Michigan Technological University. He has a strong passion for teaching and has research experience in multiple areas of heat transfer, phase changes, and biomedical applications.

Seong Hyuk Lee received his B.S., M.S., and Ph.D. in Mechanical Engineering Department from Chung-Ang University in Korea. He is currently a Professor of Mechanical Engineering Department at Chung-Ang University. He has research experience in various fields of heat and mass transfer, interfacial phenomena, evaporation/condensation heat transfer, SPR visualization, and computational physics.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, C.H., Lee, H.J., Choi, C.K. et al. Review of the binary mixture droplet evaporation studies. J Mech Sci Technol 35, 5259–5272 (2021). https://doi.org/10.1007/s12206-021-1101-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-021-1101-3

Keywords

  • Droplet evaporation
  • Binary mixture droplet (BMD)
  • Selective evaporation
  • Contact line motion