Skip to main content
Log in

Experimental study of droplet splashing phenomena on hydrophobic micro-and micro/nano-textured surfaces

  • Original Article
  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

Droplet splashing phenomena are observed experimentally on the well-designed hydrophobic micro and micro-/nano-textured surfaces. The critical Weber numbers (Wecr) for splashing are investigated by considering the geometrical surface conditions. The splashing was facilitated with large micropillar spacing and diameter and suppressed with small ones. Large pillar spacing and diameter enabled easy penetration of liquid by reduced capillary force and increased the outlet of airflow. This air-liquid velocity difference creates instability at the edge of the spreading droplet, thereby generating splashing based on the Kelvin-Helmholtz instability mechanism. Besides, earlier splashing was observed on micro/nano textures than on microtextured surfaces. Since the impacting droplet could not penetrate the nanopillars due to higher capillary pressure and slip boundary condition formation, it reduces airflow friction. Hence an increase in the air-liquid velocity ratio renders splashing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

Area

D 0 :

Droplet initial diameter

d m :

Micropillar diameter

f :

Roughness ratio

F r :

Retention force

h m :

Micropillar height

h i :

Liquid penetration depth

p m :

Pitch distance between micropillars

P C :

Capillary pressure

P D :

Dynamic pressure

s m :

Micropillar spacing

U 0 :

Drop impact velocity

U air :

Expelled airflow velocity

θ :

Contact angle

μ :

Dynamic viscosity

ρ :

Density

References

  1. R. Rioboo, C. Tropea and M. Marengo, Outcomes from a drop impact on solid surfaces, Atomization and Sprays, 11 (2001) 155–165.

    Article  Google Scholar 

  2. A. L. Yarin, Drop impact dynamics: splashing, spreading, receding, bouncing, Annu. Rev. Fluid Mech., 38 (2006) 159–192.

    Article  MathSciNet  MATH  Google Scholar 

  3. C. Josserand and S. T. Thoroddsen, Drop impact on a solid surface, Annu. Rev. Fluid. Mech., 48 (2016) 365–391.

    Article  MathSciNet  MATH  Google Scholar 

  4. P. Tsai, S. Pacheco, C. Pirat, L. Lefferts and D. Lohse, Drop impact upon micro- and nano-structured superhydrophobic surfaces, Langmuir, 25 (2009) 12293–12298.

    Article  Google Scholar 

  5. H. Kim, C. Lee, M. H. Kim and J. Kim, Drop impact characteristics and structure effects of hydrophobic surfaces with micro-and/or nano-scaled structures, Langmuir, 28 (2012) 1250–11257.

    Article  Google Scholar 

  6. N. D. Patil, R. Bhardwaj and A. Sharma, Droplet impact dynamics on micropillared hydrophobic surfaces, Exp. Ther. and Fluid. Sci., 74 (2016) 195–206.

    Article  Google Scholar 

  7. N. P. Sapkal, K. D. Seo and D. I. Yu, Visualization study of droplet impact phenomena on micro-, micro/nano-textured surfaces and lubricant infused surfaces, J. Korean Soc. of Mech. Technol., 22(6) (2020) 1161–1168.

    Google Scholar 

  8. V. Bergeron, D. Bonn, J. Y. Martin and L. Vovelle, Controlling droplet deposition with polymer additives, Nature, 405 (2000) 772–775.

    Article  Google Scholar 

  9. D. B. van Dam and C. L. Clerc, Experimental study of the impact of an ink-jet printed droplet on a solid substrate, Phys. Fluids, 16 (2004) 3403–3414.

    Article  MATH  Google Scholar 

  10. I. V. Roisman, K. Horvat and C. Tropea, Spray impact: rim transverse instability initiating fingering and splash, and description of a secondary spray, Phys. Fluids, 18 (2006) 102104.

    Article  MathSciNet  MATH  Google Scholar 

  11. A. L. N. Moreira, A. S. Moita and M. R. Panaro, Advances and challenges in explaining fuel spray impingement: how much of single droplet impact research is useful?, Prog. Energy Combust. Sci., 36 (2010) 554–580.

    Article  Google Scholar 

  12. A. M. Worthington, A second paper on the forms assumed by drops of liquids falling vertically on a horizontal plate, Proc. R. Soc. London, 25 (1876) 498–503.

    Google Scholar 

  13. R. F. Allen, The role of surface tension in splashing, J. Colloid Interface Sci., 51 (1975) 350–351.

    Article  Google Scholar 

  14. H. Kim, U. Park, C. Lee, H. Kim, M. H. Kim and J. Kim, Drop splashing on a rough surface: how surface morphology affects splashing threshold, Appl. Phys. Lett., 104 (2014) 161608.

    Article  Google Scholar 

  15. Y. Liua, P. Tana and L. Xu, Kelvin-Helmholtz instability in an ultrathin air film causes drop splashing on smooth surfaces, PNAS, 112 (2015) 3280–3284.

    Article  Google Scholar 

  16. J. Liu, H. Vu, S. S. Yoon, R. Jepsen and G. Aguilar, Splashing phenomena during liquid droplet impact, Atomization and Sprays, 20(4) (2010) 297–310.

    Article  Google Scholar 

  17. C. Mundo, M. Sommerfeld and C. Tropea, Droplet-wall collisions: experimental studies of the deformation and breakup process, Int. J. Multiphase Flow, 21 (1995) 151–173.

    Article  MATH  Google Scholar 

  18. L. Xu, W. W. Zhang and S. R. Nagel, Drop splashing on a dry smooth surface, Phys. Rev. Lett., 94 (2005) 184505.

    Article  Google Scholar 

  19. L. Xu, Liquid drop splashing on smooth, rough, and textured surfaces, Phy. Rev. E, 75 (2007) 056316.

    Article  Google Scholar 

  20. G. Riboux and J. M. Gordillo, Experiments of drops impacting a smooth solid surface: model of the critical impact speed for drop splashing, Phys. Rev. Lett., 113 (2014) 024507.

    Article  Google Scholar 

  21. K. Range and F. Feuillebois, Influence of surface roughness on liquid drop impact, J. Coll. Interf. Sci., 203 (1998) 16–30.

    Article  Google Scholar 

  22. A. Latka, A. S. Peshkin, M. M. Driscoll, C. S. Stevens and S. R. Nagel, Creation of prompt and thin-sheet splashing by varying surface roughness or increasing air pressure, Phy. Rev. Letters, 109 (2012) 054501.

    Article  Google Scholar 

  23. T. C. de Goede, N. Laan, K. G. de Bruin and D. Bonn, Effect of wetting on drop splashing of Newtonian fluids and blood, Langmuir, 34 (2018) 5163–5168.

    Article  Google Scholar 

  24. T. C. de Goede, K. G. de Bruin, N. Shahidzadeh and D. Bonn, Droplet splashing on rough surfaces, Phys. Rev. Fluids, 6 (2021) 043604.

    Article  Google Scholar 

  25. R. Rioboo, M. Voue, A. Vaillant and J. De Coninck, Drop impact on porous superhydrophobic polymer surfaces, Langmuir, 24 (2008) 14074–14077.

    Article  Google Scholar 

  26. D. Bartolo, F. Bouamrirene and A. Buguin, Bouncing or sticky droplets: impalement transitions on micropatterned surfaces, Europhys Lett., 74 (2006) 299–305.

    Article  Google Scholar 

  27. M. Reyssat, A. Pépin, F. Marty, Y. Chen and D. Quéré, Bouncing transitions on microtextured materials, Europhys. Lett., 74 (2006) 306–312.

    Article  Google Scholar 

  28. K. M. Wisdom, J. A. Watson, X. Qu, F. Liu, G. S. Watson and C. H. Chen, Self-cleaning of superhydrophobic surfaces by self-propelled jumping condensate, PNAS (2013) 7992–7997.

  29. H. Y. Guo, B. Li and X. Q. Feng, Stability of Cassie-Baxter wetting states on microstructured surfaces, Phy. Rev. E, 94 (2016) 042801.

    Article  Google Scholar 

  30. R. Zhang, P. Hao, X. Zhang, F. Niu and F. He, Tunable droplet breakup dynamics on micropillared superhydrophobic surfaces, Langmuir, 34 (2018) 7942–7950.

    Article  Google Scholar 

  31. H. Jansen, M. de Boer, R. Legtenberg and M. Elwenspoek, The black silicon method: a universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control, J. Micromech. Microeng., 5 (1995) 115–120.

    Article  Google Scholar 

  32. D. I. Yu, H. J. Kwak, C. Park, C. Choi, N. P. Sapkal, J. Hong and M. H. Kim, Wetting criteria of intrinsic contact angle to distinguish between hydrophilic and hydrophobic micro-/nano-textured surfaces: experimental and theoretical analysis with synchrotron X-ray imaging, Langmuir, 35 (2019) 3607–3614.

    Article  Google Scholar 

  33. R. Xiao, R. Enright and E. N. Wang, Prediction and optimization of liquid propagation in micropillar arrays, Langmuir, 26 (2010) 15070–15075.

    Article  Google Scholar 

  34. D. Bartolo, C. Josserand and D. Bonn, Singular jets and bubbles in drop impact, Physical Review Letters, 96 (2006) 124501.

    Article  Google Scholar 

  35. C. Stanley, R. Jackson, N. Karwa and G. Rosengarten, The effects of surface wettability on droplet fingering, 19th Australasian Fluid Mechanics Conference (2014).

  36. S. Kim, T. Wang, L. Zhang and Y. Jiang, Droplet impacting dynamics on wettable, rough and slippery oil-infuse surfaces, Journal of Mechanical Science and Technology, 34(1) (2020) 219–228.

    Article  Google Scholar 

  37. P. Tsai, R. C. A. Van Der Veen, M. Van De Raa and D. Lohse, How micropatterns and air pressure affect splashing on surfaces, Langmuir, 26 (2010) 16090–16095.

    Article  Google Scholar 

  38. S. Mandre, M. Mani and M. P. Brenner, Precursors to splashing of liquid droplets on a solid surface, Phys. Rev. Lett., 102 (2009) 134502.

    Article  Google Scholar 

  39. M. Mani, S. Mandre and M. P. Brenner, Events before droplet splashing on a solid surface, J. Fluid. Mech., 647 (2010) 163–185.

    Article  MathSciNet  MATH  Google Scholar 

  40. M. M. Driscoll and S. R. Nagel, Ultrafast interference imaging of air in splashing dynamics, Phys. Rev. Lett., 107 (2011) 154502.

    Article  Google Scholar 

  41. S. S. Yoon, R. A. Jepsen, S. C. James, J. Liu and G. Aguilar, Are drop-impact phenomena described by Rayleigh-Taylor or Kelvin-Helmholtz theory?, Drying Technology, 27(3) (2009) 316–321.

    Article  Google Scholar 

  42. T. Deng, K. K. Varanasi, M. Hsu, N. Bhate, C. Keime, J. Stein and M. Blohm, Nonwetting of impinging droplets on textured surfaces, Appl. Phys. Lett., 94 (2009) 133109.

    Article  Google Scholar 

  43. H. Kim and S. H. Kim, Non-wettable hierarchical structure effect on droplet impact and spreading dynamics, Langmuir, 34 (2018) 5480–5486.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MOE) (no. NRF-2018R1D1A1B07048332). This work was supported by the “Human Resources Program in Energy Technology” program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), financed by the Ministry of Trade, Industry and Energy, Republic of Korea (grant no. 20184010201700). We thank SuKon Kim of the National Institute for Nanomaterials Technology (NINT) for help with the MEMS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong In Yu.

Additional information

Narayan Pandurang Sapkal received his Master degree (2016) in Mechanical Engineering from Pukyong National University, Korea. Currently, he is a Ph.D. Student at the Department of Mechanical Design Engineering, Pukyong National University, Korea.

Su Cheong Park received a Ph.D. degree in Mechanical Engineering from POSTECH, Korea in 2020. Dr. Park is currently a Post Doctor at the Department of Mechanical Design Engineering in Pukyong National University, Korea.

Yeon Won Lee received a Ph.D. in Turbulence Modeling and Numerical Methods in 1993 from the University of Tokyo. Since 1993, Dr. Lee has been a Professor at the School of Mechanical Engineering, Pukyong National University, Korea.

Dong In Yu received a Ph.D. degree in Mechanical Engineering from POSTECH, Korea, in 2014. Dr. Yu is currently an Assistant Professor at the Department of Mechanical Design Engineering in Pukyong National University, Korea.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sapkal, N.P., Park, S.C., Lee, Y.W. et al. Experimental study of droplet splashing phenomena on hydrophobic micro-and micro/nano-textured surfaces. J Mech Sci Technol 35, 5061–5070 (2021). https://doi.org/10.1007/s12206-021-1023-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-021-1023-0

Keywords

Navigation