Skip to main content
Log in

Clustering of decomposed strain signal energy for durability classification

  • Original Article
  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

This paper presents clustering of automotive spring fatigue life for failure classification based on K-means approach. For safety promotion of buses, fatigue life prediction of the spring is needed to be classified for maintenance. In this analysis, the strain signals of a heavy vehicle leaf spring were collected from two common roads and analyzed using Hilbert Huang transform. The strain amplitude was used to obtain fatigue life of the leaf spring. Subsequently, the instantaneous frequencies, energies and fatigue lives were clustered into three groups according to the K-means approach. Numerous classification trees were trained with the clustered group as target while the instantaneous frequencies, energies and fatigue lives datasets as input. The trained classification trees were evaluated using receiver operating characteristic curve which shown an acceptable prediction of classes. This classification tree serves as a tool to evaluation automotive leaf spring design for fatigue failure prevention without destroying the component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. M. Arisoy and T. Özel, Machine learning based predictive modeling of machining induced microhardness and grain size in Ti-6Al-4V alloy, Mater. Manuf. Process., 30(4) (2015) 425–433.

    Article  Google Scholar 

  2. A. Aid, A. Amrouche, B. B. Bouiadjra, M. Benguediab and G. Mesmacque, Fatigue life prediction under variable loading based on a new damage model, Mater. Des., 32(1) (2011) 183–191.

    Article  Google Scholar 

  3. Y. S. Kong, S. Abdullah, D. Schramm, M. Z. Omar and S. M. Haris, Optimization of spring fatigue life prediction model for vehicle ride using hybrid multi-layer perceptron artificial neural networks, Mech. Syst. Signal Process., 122 (2019) 597–621.

    Article  Google Scholar 

  4. J. C. F. Pujol and J. M. A. Pinto, A neural network approach to fatigue life prediction, Int. J. Fatigue, 33 (2011) 313–322.

    Article  Google Scholar 

  5. J. Zhang, J. Lu and H. L. Han, Program load spectrum compilation for accelerated life test of parabolic leaf spring, Int. J. Automot. Technol., 20 (2019) 337–347.

    Article  Google Scholar 

  6. Z. Zhang, C. Sun, R Bridgelall and M. Sun, Road profile reconstruction using connected vehicle responses and wavelet analysis, J. Terramechanics, 80 (2018) 21–30.

    Article  Google Scholar 

  7. S. S. K. Singh and S. Abdullah, Durability analysis using Markov chain modeling under random loading for automobile crankshaft, Int. J. Struct. Integr., 10(4) (2019) 454–468.

    Article  Google Scholar 

  8. D. Goyal and B. S. Pabla, The vibration monitoring methods and signal processing techniques for structural health monitoring: a review, Arch. Comput. Methods Eng., 23 (2016) 585–594.

    Article  MathSciNet  MATH  Google Scholar 

  9. A. A. A. Rahim, S. Abdullah, S. S. K. Singh and M. Z. Nuawi, Selection of the optimum decomposition level using the discrete wavelet transform for automobile suspension system, Journal of Mechanical Science and Technology, 34(1) (2020) 137–142.

    Article  Google Scholar 

  10. Y. S. Wang, Q. H. Ma, Q. Zhu, X. T. Liu and L. H. Zhao, An intelligent approach for engine fault diagnosis based on Hilbert-Huang transform and support vector machine, Appl. Acoust., 75 (2014) 1–9.

    Article  Google Scholar 

  11. R. Burdzik, Identification of structure and directional distribution of vibration transferred to car-body from road roughness, J. Vibroengineering, 16 (2014) 324–333.

    Google Scholar 

  12. N. N. Nadia, S. S. K. Singh, S. Abdullah and S. M. Haris, Accelerating the fatigue analysis based on strain signal using Hilbert-Huang transform, Int. J. Struct. Integr., 10 (2019) 118–132.

    Article  Google Scholar 

  13. N. Nurnajihah and M. Nasir, Time-frequency strain data analysis of suspension using the Hilbert-Huang transform, Journal of Mechanical Engineering, 7 (2018) 59–77.

    Google Scholar 

  14. G. Wang and S. Yin, Data-driven fault diagnosis for an automobile suspension system by using a clustering based method, J. Franklin Inst., 351 (2014) 3231–3244.

    Article  MathSciNet  MATH  Google Scholar 

  15. Z. A. Halim, N. Jamaludin, S. Junaidi and S. Y. S. Yahya, Vibration impact acosutic emission technique for identification and analysis of defects in carbon steel tubes: part B. cluster analysis, Journal of Mechanical Science and Technology, 29 (2015) 1559–1570.

    Article  Google Scholar 

  16. M. M. Rahman, H. M. Mohyaldeen, M. M. Noor, K. Kadirgama and R. A. Bakar, Linear static response of suspension arm based on artificial neural network technique, Adv. Mater. Res., 213 (2011) 419–426.

    Article  Google Scholar 

  17. M. F. M. Yunoh, S. Abdullah, M. H. M. Saad, Z. M. Nopiah and M. Z. Nuawi, K-means clustering analysis and artificial neural network classification of fatigue strain signals, J. Brazilian Soc. Mech. Sci. Eng., 39 (2017) 757–764.

    Article  Google Scholar 

  18. C. Sankavaram, A. Kodali, D. F. Martinez, K. R. Pattipati, S. Singh and P. Bandyopadhyay, Event-driven data mining techniques for automotive fault diagnosis, Proc. 21st Int. Work Princ. Diagnosis (2010) 1–8.

    Google Scholar 

  19. C. V. Trappey, A. J. C. Trappey, A. Y. L. Huang and G. Y. P. Lin, Automobile manufacturing logistic service management and decision support using classification and clustering methodologies, Global Perspective for Competitive Enterprise, Economy and Ecology (2009) 581–592.

    Chapter  Google Scholar 

  20. G. W. Bright, J. I. Kennedy, F. Robinson, M. Evans, M. T. Whittaker and J. Sullivan, Variability in the mechanical properties and processing conditions of a high strength low alloy steel, Procedia Eng., 10 (2011) 106–111.

    Article  Google Scholar 

  21. C. Gorges, K. Öztürk and R. Liebich, Impact detection using a machine learning approach and experimental road roughness classification, Mech. Syst. Signal Process, 117 (2019) 738–756.

    Article  Google Scholar 

  22. M. Bocksch, J. Seitz and J. Jahn, Pedestrian activity classification to improve human tracking and localization, Int. Conf. Indoor Navig. (2013) 39–47.

    Google Scholar 

  23. Y. S. Kong, M. Z. Omar, L. B. Chua and S. Abdullah, Fatigue life prediction of parabolic leaf spring under various road conditions, Eng. Fail. Anal., 46 (2014) 92–103.

    Article  Google Scholar 

  24. Y. S. Kong, S. Abdullah, S. M. Haris, M. Z. Omar and D. Schramm, Generation of aritificial road profile for automobile spring durability analysis, Jurnal Kejuruteraan, 30 (2018) 123–128.

    Article  Google Scholar 

  25. A. Ince and G. Glinka, A modification of Morrow and Smith-Watson-Topper mean stress correction models, Fatigue Fract. Eng. Mater. Struct., 34 (2011) 854–867.

    Article  Google Scholar 

  26. N. E. Huang and Z. Wu, A review on hilbert-huang transform: method and its applications, Rev. Geophys., 46 (2008) 1–23.

    Article  Google Scholar 

  27. J. Xun and S. Yan, A revised Hilbert-Huang transformation based on the neural networks and its application in vibration signal analysis of a deployable structure, Mech. Syst. Signal Process, 22 (2008) 1705–1723.

    Article  Google Scholar 

  28. T. T. Wong, Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation, Pattern Recognit., 48 (2015) 2839–2846.

    Article  MATH  Google Scholar 

  29. N. E. I. Karabadji, H. Seridi, F. Bousetouane, W. Dhifli and S. Aridhi, An evolutionary scheme for decision tree construction, Knowledge-based Syst., 119 (2017) 166–177.

    Article  Google Scholar 

  30. A. K. Dwivedi, Performance evaluation of different machine learning techniques for prediction of heart disease, Neural Comput. Appl., 29 (2018) 685–693.

    Article  Google Scholar 

  31. P. Krauze, J. Kasprzyk, A. Kozyra and J. Rzepecki, Experimental analysis of vibration control algorithms applied for an off-road vehicle with magnetorheological dampers, J. Low Freq. Noise Vib. Act. Control, 37 (2018) 619–639.

    Article  Google Scholar 

  32. F. Sagasta, A. Benavent-Climent, A. Roldán and A. Gallego, Correlation of plastic strain energy and acoustic emission energy in reinforced concrete structures, Appl. Sci., 6(3) (2016) 84.

    Article  Google Scholar 

  33. P. Múčka, Influence of road profile obstacles on road unevenness indicators, Road Mater. Pavement Des., 14 (2013) 689–702.

    Article  Google Scholar 

  34. Q. Wang, T. T. Nguyen, J. Z. Huang and T. T. Nguyen, An efficient random forests algorithm for high dimensional data classification, Advance in Data Analysis and Classification, 12 (2018) 953–972.

    Article  MathSciNet  MATH  Google Scholar 

  35. K. T. P. Nguyen, A. Khlaief, K. Medjaher, A. Picot, P. Maussion and D. Tobon, Analysis and comparison of multiple features for fault detection and prognostic in ball bearings, PHM Society European Conference (2015) 1–9.

    Google Scholar 

  36. A. Prudhom, J. Antonino-Daviu, H. Razik and V. Climente-Alarcon, Time-frequency vibration analysis for the detection of motor damages caused by bearing currents, Mech. Syst. Signal Process, 84 (2017) 747–762.

    Article  Google Scholar 

  37. Y. Taskin, I. Yuksek and N. Yagiz, Vibration control of vehicles with active tuned mass damper, J. Vibroengineering, 19 (2017) 3533–3541.

    Article  Google Scholar 

  38. T. Doan and A. Takasu, Robust vehicle detection from noisy acceleration signal for bridge monitoring systems, ACM Int. Conf. Proceeding Ser. (2017) 136–140.

    Google Scholar 

  39. Z. Peng, H. Z. Huang, S. P. Zhu, H. Gao and Z. Lv, A fatigue driving energy approach to high-cycle fatigue life estimation under variable amplitude loading, Fatigue. Fract. Eng. Mater. Struct., 39 (2016) 180–193.

    Article  Google Scholar 

  40. A. M. Shahiri, W. Husain and N. A. Rashid, A review on predicting student’s performance using data mining techniques, Procedia. Comput. Sci., 72 (2015) 414–422.

    Article  Google Scholar 

  41. J. N. Mandrekar, Receiver operating characteristic curve in diagnostic test assessment, J. Thorac. Oncol., 5 (2010) 1315–1316.

    Article  Google Scholar 

  42. P. B. Blakesley, Vehicle Seat Weight Sensor, US Patent US6161891A, United States Patent and Trademark Office, Alexandria, VA (2000).

    Google Scholar 

  43. W. Takayasu, S. Ishima, S. Endo and K. Sato, Passenger’s Weight Measurement Device for Vehicle Seat and Attachment Structure for Load Sensor, US Patent US802876B2, United States Patent and Trademark Office, Alexandria, VA (2011).

    Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge Universiti Kebangsaan Malaysia research grants FRGS/1/2019/TK03/UKM/01/3 and GUP-2018-077 for the research funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahrum Abdullah.

Additional information

Yat Sheng Kong is a Ph.D. graduate from Universiti Kebangsaan Malaysia and University of Duisburg-Essen, Germany. He is a Technical Solution Specialist at Quantarad Technologies Sdn Bhd. His research interests include data analysis, vibrations, structure durability and vehicle dynamics.

Shahrum Abdullah is a Professor at Department of Mechanical and Manufacturing Engineering, UKM, Malaysia. He received his Ph.D. from the University of Sheffield, UK in 2005. His research interests are fatigue analysis, fracture mechanics, signal processing and engineering design.

Salvinder Singh Karam Singh is a Senior Lecturer at Department of Mechanical and Manufacturing Engineering, UKM, Malaysia. He received his Ph.D. from Universiti Kebangsaan Malaysia in 2016. His research interests are reliability and fatigue design.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, Y.S., Abdullah, S. & Singh, S.S.K. Clustering of decomposed strain signal energy for durability classification. J Mech Sci Technol 35, 2061–2072 (2021). https://doi.org/10.1007/s12206-021-0422-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-021-0422-6

Keywords

Navigation