Skip to main content
Log in

Optimization of thermal buckling control for composite laminates with PFRC actuators using trigonometric shear deformation theory

  • Original Article
  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

This work aims to explore optimal design and control of thermal buckling for composite laminates with piezoelectric fiber reinforced composite (PFRC) actuators. Four-variable trigonometric shear deformation theory without introduction of a shear correction factor is used in the structural modeling. The high accuracy of the present approach is examined by analyzing the critical buckling temperature and natural frequency compared with references results. A temperature feedback control approach is proposed in designing the controller. Taking fiber angle as the optimization design variable, layerwise optimization approach (LOA) is applied to maximize critical buckling temperature of piezolaminated plate and a set of stacking sequences are obtained. The resulting analysis demonstrates that the proposed control approach can clearly increase the critical buckling temperature of piezo-laminated plates. The optimization process developed is useful in devising stacking sequences for the piezo-laminated structures in thermal environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Ounis, A. Tati and A. Benchabane, Thermal buckling behavior of laminated composite plates: a finite-element study, Frontiers of Mechanical Engineering, 9 (2014) 41–49.

    Article  Google Scholar 

  2. X. Yang, Q. Fei, S. Wu and Y. Li, Thermal buckling and dynamic characteristics of composite plates under pressure load, Journal of Mechanical Science and Technology, 34 (2020) 3117–3125.

    Article  Google Scholar 

  3. J. Li, X. Tian, Z. Han and Y. Narita, Stochastic thermal buckling analysis of laminated plates using perturbation technique, Composite Structures, 139 (2016) 1–12.

    Article  Google Scholar 

  4. M. M. Ghomshei and A. Mahmoudi, Thermal buckling analysis of cross-ply laminated rectangular plates under nonuniform temperature distribution: a differential quadrature approach, Journal of Mechanical Science and Technology, 24 (2011) 2519–2527.

    Article  Google Scholar 

  5. M. M. Ghomshei and V. Abbasi, Thermal buckling analysis of annular FGM plate having variable thickness under thermal load of arbitrary distribution by finite element method, Journal of Mechanical Science and Technology, 27 (2013) 1031–1039.

    Article  Google Scholar 

  6. S. Kapuria and G. G. S. Achary, Exact 3D piezothermoelasticity solution for buckling of hybrid cross-ply plates using state space approach, Zamm-Zeitschrift Fur Angewandte Mathematik Und Mechanik, 85 (2005) 189–201.

    Article  MathSciNet  Google Scholar 

  7. S. Kapuria and G. G. S. Achary, Nonlinear coupled zigzag theory for buckling of hybrid piezoelectric plates, Composite Structures, 74 (2006) 253–264.

    Article  Google Scholar 

  8. B. Mirzavand and M. R. Eslami, A closed-form solution for thermal buckling of piezoelectric FGM rectangular plates with temperature-dependent properties, Acta Mechanica, 218 (2010) 87–101.

    Article  Google Scholar 

  9. M. Karimiasl, F. Ebrahimi and V. Mahesh, Hygrothermal post-buckling analysis of smart multiscale piezoelectric composite shells, The European Physical Journal Plus, 135 (2020).

  10. M. Bohlooly and B. Mirzavand, A closed-form solution for thermal buckling of cross-ply piezolaminated plates, International Journal of Structural Stability and Dynamics, 16 (2016) 1450112.

    Article  MathSciNet  Google Scholar 

  11. M. R. Prabhu and R. Dhanaraj, Thermal buckling of laminated composite plates, Computers & Structures, 53 (1994) 1193–1204.

    Article  Google Scholar 

  12. T. Kant and C. S. Babu, Thermal buckling analysis of skew fibre-reinforced composite and sandwich plates using shear deformable finite element models, Composite Structures, 49 (2000) 77–85.

    Article  Google Scholar 

  13. M. H. Mansouri and M. Shariyat, Thermal buckling predictions of three types of high-order theories for the heterogeneous orthotropic plates, using the new version of DQM, Composite Structures, 113 (2014) 40–55.

    Article  Google Scholar 

  14. M. Cetkovic, Thermal buckling of laminated composite plates using layerwise displacement model, Composite Structures, 142 (2016) 238–253.

    Article  Google Scholar 

  15. B. Han, K. K. Qin, Q. C. Zhang, Q. Zhang, T. J. Lu and B. H. Lu, Free vibration and buckling of foam-filled composite corrugated sandwich plates under thermal loading, Composite Structures, 172 (2017) 173–189.

    Article  Google Scholar 

  16. H. S. Shen and Y. Xiang, Thermal buckling and postbuckling behavior of FG-GRC laminated cylindrical shells with temperature-dependent material properties, Meccanica, 54 (2019) 283–297.

    Article  MathSciNet  Google Scholar 

  17. A. S. Sayyad and Y. M. Ghugal, On the free vibration of angle-ply laminated composite and soft core sandwich plates, Journal of Sandwich Structures & Materials, 19 (2016) 679–711.

    Article  Google Scholar 

  18. M. Khiloun, A. A. Bousahla, A. Kaci, A. Bessaim, A. Tounsi and S. R. Mahmoud, Analytical modeling of bending and vibration of thick advanced composite plates using a four-variable quasi 3D HSDT, Engineering with Computers, 36 (2020) 807–821.

    Article  Google Scholar 

  19. M. E. Fares, Y. G. Youssif and M. A. Hafiz, Optimization control of composite laminates for maximum thermal buckling and minimum vibrational response, Journal of Thermal Stresses, 25 (2002) 1047–1064.

    Article  MathSciNet  Google Scholar 

  20. M. E. Fares, Y. G. Youssif and M. A. Hafiz, Structural and control optimization for maximum thermal buckling and minimum dynamic response of composite laminated plates, International Journal of Solids and Structures, 41 (2004) 1005–1019.

    Article  Google Scholar 

  21. M. E. Fares, Y. G. Youssif and M. A. Hafiz, Multiobjective design and control optimization for minimum thermal postbuckling dynamic response and maximum buckling temperature of composite laminates, Structural and Multidisciplinary Optimization, 30 (2005) 89–100.

    Article  Google Scholar 

  22. A. Rama Mohan Rao and N. Arvind, A scatter search algorithm for stacking sequence optimisation of laminate composites, Composite Structures, 70 (2005) 383–402.

    Article  Google Scholar 

  23. K. K. Yoo and J. H. Kim, Optimal design of smart skin structures for thermo-mechanical buckling and vibration using a genetic algorithm, Journal of Thermal Stresses, 34 (2011) 1003–1020.

    Article  Google Scholar 

  24. J. Li, Y. Narita and Z. Wang, The effects of non-uniform temperature distribution and locally distributed anisotropic properties on thermal buckling of laminated panels, Composite Structures, 119 (2015) 610–619.

    Article  Google Scholar 

  25. S. Kamarian, M. Shakeri and M. H. Yas, Thermal buckling optimisation of composite plates using firefly algorithm, Journal of Experimental & Theoretical Artificial Intelligence, 29 (2016) 787–794.

    Article  Google Scholar 

  26. X. Y. Zhou, X. Ruan and P. D. Gosling, Thermal buckling optimization of variable angle tow fibre composite plates with gap/overlap free design, Composite Structures, 223 (2019) 110932.

    Article  Google Scholar 

  27. Y. Narita, Layerwise optimization for the maximum fundamental frequency of laminated composite plates, Journal of Sound and Vibration, 263 (2003) 1005–1016.

    Article  Google Scholar 

  28. Y. Narita and J. M. Hodgkinson, Layerwise optimisation for maximising the fundamental frequencies of point-supported rectangular laminated composite plates, Composite Structures, 69 (2005) 127–135.

    Article  Google Scholar 

  29. H. L. Dai and H. Y. Zheng, Buckling and post-buckling analyses for an axially compressed laminated cylindrical shell of FGM with PFRC in thermal environments, European Journal of Mechanics — A/Solids, 30 (2011) 913–923.

    Article  MathSciNet  Google Scholar 

  30. J. Li and Y. Narita, Analysis and optimal design for supersonic composite laminated plate, Composite Structures, 101 (2013) 35–46.

    Article  Google Scholar 

  31. J. Li and F. Li, Active control of thermal buckling for plates using a temperature feedback control method, Smart Materials and Structures, 28 (2019) 045001.

    Article  Google Scholar 

  32. J. Li, F. Li and Y. Narita, Active control of thermal buckling and vibration for a sandwich composite laminated plate with piezoelectric fiber-reinforced composite actuator facesheets, Journal of Sandwich Structures & Materials, 21 (2019) 2563–2581.

    Article  Google Scholar 

  33. A. K. Noor and W. S. Burton, Three-dimensional solutions for thermal buckling of multilayered anisotropic plates, Journal of Engineering Mechanics, 118 (1992) 683–701.

    Article  Google Scholar 

  34. H. Matsunaga, Thermal buckling of angle-ply laminated composite and sandwich plates according to a global higher-order deformation theory, Composite Structures, 72 (2006) 177–192.

    Article  Google Scholar 

  35. H. S. Shen, Thermal postbuckling of shear-deformable laminated plates with piezoelectric actuators, Composites Science and Technology, 61 (2001) 1931–1943.

    Article  Google Scholar 

  36. X. L. Huang and H. S. Shen, Nonlinear free and forced vibration of simply supported shear deformable laminated plates with piezoelectric actuators, International Journal of Mechanical Sciences, 47 (2005) 187–208.

    Article  Google Scholar 

  37. G. Akhras and W. C. Li, Three-dimensional thermal buckling analysis of piezoelectric antisymmetric angle-ply laminates using finite layer method, Composite Structures, 92 (2010) 31–38.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 12072084 and 11761131006) and the Ph.D. Student Research and Innovation Fund of the Fundamental Research Funds for the Central Universities (No. 3072020GIP0206).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinqiang Li.

Additional information

Jinqiang Li is an Assistant Professor and Doctoral Supervisor of the College of Aerospace and Civil Engineering, Harbin Engineering University, China. He received his Ph.D. in Mechanical Engineering from Hokkaido University, Japan. His research interests include finite element analysis and active vibration control.

Yu Xue received his M.S. from Taiyuan University of Technology, China in Mechanics. He is a Ph.D. candidate in the College of Aerospace and Civil Engineering, Harbin Engineering University, and his research interests include vibration analysis and structural optimization.

Yao Zhang received his B.S. from Taiyuan University of Technology, China the College of Aerospace and Civil Engineering, Harbin Engineering University, and his research interests include active and passive control of composite structure and finite element analysis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, Y., Zhang, Y. & Li, J. Optimization of thermal buckling control for composite laminates with PFRC actuators using trigonometric shear deformation theory. J Mech Sci Technol 35, 257–266 (2021). https://doi.org/10.1007/s12206-020-1225-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-020-1225-x

Keywords

Navigation