Skip to main content
Log in

Negative thermal expansion in porous glass-ceramics based on Mg2Al2B2Si5O18 prepared from Saudi raw materials

  • Original Article
  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

A porous glass-ceramic enjoyed very low and negative thermal expansion was prepared. A glass of the base molar composition, 2 MgO·2 Al2O3·2 B2O3·5 SiO2 with the addition of 1.61 ma% TiO2, was melted from kaolin, magnesite, silica sand and boric acid. The composition is based on cordierite where 50 % Al2O3 were replaced by an equimolar concentration of B2O3. The glass was crashed and powdered, subsequently plastified, uniaxially pressed and finally sintered at temperatures in the range from 1100 to 1300 °C. X-ray diffraction of sintered samples gave evidence of a cordierite like crystalline phase. Scanning electron microscopy and electron dispersive microanalysis of samples prepared at 1300 °C showed crystals with hexagonal shape doped by TiO2, B2O3 and Fe2O3 embedded in a glassy matrix. With increasing crystallization temperature, the porosity of the glass-ceramics increased from 8.99 % (at 1200 °C for 3 min) to 56.42 % (at 1300 °C for 3 min). This led to a decrease of the specimen density from 1.9880 to 1.1278 g/cm3 whereas the skeletal density increased from 2.1303 g/cm3 to 2.5878 g/cm3. The microhardnesses were in the 5.60 and 6.00 GPa range. The coefficient of thermal expansion was between −3.26 and −2.27×10−6 K−1 from room temperature up to 300 oC and −0.45 and 1.89×10−6 K−1 from room temperature up to 500 °C. For the first time, to the best of our knowledge, a porous cordierite glass-ceramic with negative thermal expansion is reported. The partial replacement of Al2O3 by B2O3 enables to apply lower melting temperature which is advantageous for the production process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. R. Studart, U. T. Gonzenbach, E. Tervoort and L. J. Gauckler, Processing routes to macroporous ceramics: a review, J. Am. Ceram. Soc., 89 (2006) 1771–1789.

    Article  Google Scholar 

  2. W. Höland and G. H. Beall, Glass-Ceramic Technology, American Ceramic Society, Westerville, OH, USA (2002) 43081.

    Google Scholar 

  3. A. W. Sleight, Negative thermal expansion materials, Curr. Opin. Solid. State. Mater. Sci., 3 (1998) 128–131.

    Article  Google Scholar 

  4. A. W. Sleight, Isotropic negative thermal expansion, Ann. Rev. Mater. Sci., 28 (1998) 29–43.

    Article  Google Scholar 

  5. A. W. Sleight, M. A. Thundathil and J. S. O. Evans, Negative Thermal Expansion Materials, U. S. Patent 5514360, United States Patent and Trademark Office (1996).

  6. W. Pannhorst, Recent developments for commercial applications of low thermal expansion glass ceramics, Glass Technol., 45 (2004) 51–53.

    Google Scholar 

  7. W. Guo, L. U. Hongbin and C. Feng, Influence of La2O3 on preparation and performance of porous cordierite from rice husk, J. Rare Earths, 28 (2010) 614–617.

    Article  Google Scholar 

  8. B. Benhammou, Y. El Hafiane, A. Abourriche, Y. Abouliatim, L. Nibou, A. Yaacoubi, N. Tessier-Doyen, A. Smith and B. Tanouti, Effects of oil shale addition and sintering cycle on the microstructure and mechanical properties of porous cordierite-ceramic, Ceram. Int., 40 (2014) 8937–8944.

    Article  Google Scholar 

  9. C. Y. Bai, X. Y. Deng, J. B. Li, Y. N. Jing, W. K. Jiang, Z. M. Liu and Y. Li, Fabrication and properties of cordierite-mullite bonded porous SiC ceramics, Ceram. Int., 40 (2014) 6225–6231.

    Article  Google Scholar 

  10. S. Izuhara, K. Kawasumi, M. Yasuda, H. Suzuki and M. Takahashi, Highly porous cordierite ceramics fabricated by in situ solidification, Ceram. Trans., 112 (2000) 553–558.

    Google Scholar 

  11. M. E. Miller, Nanoporous glass-ceramics for gas separation, Ph.D. Thesis, Alfred University, NY (2008) 123.

  12. E. R. Silva, N. Correia, J. M. Silva, F. C. Oliveira, F. R. Ribeiro, J. C. Bordado and M. F. Ribeiro, Manufacture of cordierite foams by direct foaming, Polimery, 52 (2007) 351–356.

    Article  Google Scholar 

  13. E. M. A. Hamzawy and O. A. Al-Harbi, Sintered mono-cordierite Mg2Al4−xBxSi5O18 glass-ceramic with B/Al replacement at the nano- and micro-scale, Silicon, 10 (2018) 439–444.

    Article  Google Scholar 

  14. I. Szabo, Crystallization of magnesium aluminosilicate glasses, J. Non-Cryst. Solids, 219 (1997) 128–135.

    Article  Google Scholar 

  15. G. Völksch and K. J. Heide, Dissolved gases and minor component effects on glass crystallization, J. Non-Cryst. Solids, 219 (1997) 119–127.

    Article  Google Scholar 

  16. T. Armbruster, Role of Na in the structure of low-cordierite: a single-crystal X-ray study, Am. Mineral., 7 (1986) 746–757.

    Google Scholar 

  17. G. G. Lepezin, Lavrent’ev, G. Yu and O. S. Pokachalova, Problems of alkalis in cordierites, Geologia Geophisica Akademia Nauk SSSR, Sibirskoye Otdeleniye, 3 (1974) 93–96 (in Russian).

    Google Scholar 

  18. Q. Xu, C. W. Song, W. Chen, X. Liu and F. Zhang, Structure and infrared radiation properties of substituted cordierites, J. Wuhan Univ. Technol-Mater. Sci. Ed., 21 (2006) 68–70.

    Google Scholar 

  19. E. M. A. Hamzawy and A. F. Ali, Sol-gel preparation of boron-containing cordierite Mg2(Al4−xBx)Si5O18 and its crystallization, Mater. Characterization, 57 (2006) 414–418.

    Article  Google Scholar 

  20. S. Wang and F. Kuang, Preparation and infrared radiation property of boron-substituted cordierite glass-ceramics, J. Mater. Sci. Technol., 26 (2010) 445–448.

    Article  Google Scholar 

  21. J. R. Ferraro and M. Anghnani, Infrared absorption spectra of sodium silicate glasses at high pressures, J. Appl. Phys., 44 (1972) 4595–4599.

    Article  Google Scholar 

  22. E. I. Kamitsos, M. A. Karakassides and G. D. Chryssikos, A vibrational study of lithium borate glasses with high Li2O content, Phys. Chem. Glasses, 28 (1987) 203–209.

    Google Scholar 

  23. H. Shao, K. Liang, F. Zhou, G. Wang and F. Peng, Characterization of cordierite-based glass-ceramics produced from fly ash, J. Non-Cryst. Solids, 337 (2004) 157–160.

    Article  Google Scholar 

  24. A. Herrmann and C. Rüssel, A new route to an ordered array of bubbles formed during crystallization of glass, Ceram. Int., 45 (2019) 16666–16669.

    Article  Google Scholar 

  25. R. Goren, H. Gocmez and C. Ozgur, Synthesis of cordierite powder from talc, diatomite and alumina, Ceram. Int., 32 (2006) 407–409.

    Article  Google Scholar 

  26. A. K. Nandi, Thermal expansion behavior of boron-doped cordierite glass-ceramics, J. Am. Ceram. Soc., 82 (1999) 789–790.

    Article  Google Scholar 

  27. X. Hao, Z. Luo, X. Hu, J. Song, Y. Tang and A. Lu, Effect of replacement of B2O3 by ZnO on preparation and properties of transparent cordierite-based glass-ceramics, J. Non-Cryst. Solids, 432 (2016) 265–270.

    Article  Google Scholar 

  28. D. K. Agrawal and V. S. Stubican, Germanium-modified cordierite ceramics with low thermal expansion, J. Am. Ceram. Soc., 69 (1986) 847–851.

    Article  Google Scholar 

  29. D. L. Evans, G. R. Fischer, J. E. Geiger and F. W. Martin, Thermal expansions and chemical modifications of cordierite, J. Am. Ceram. Soc., 63 (1980) 629–634.

    Article  Google Scholar 

  30. S. Bai and H. Nakata, Thermal expansion mechanism of cordierite with titanium or germanium doping based on ab initio molecular dynamics simulation, J. Am. Ceram. Soc., 103 (2020) 531–540.

    Article  Google Scholar 

  31. W. Luo, Z. Bao, W. Jiang, J. Liu, G. Feng, Y. Xu, H. Tang and T. Wang, Effect of B2O3 on the crystallization, structure and properties of MgO-Al2O3-SiO2 glass-ceramics, Ceram. Int., 45 (2019) 24750–24756.

    Article  Google Scholar 

  32. S. Wang, H. Wang, Z. Chen, R. Ji, L. Liu and X. Wang, Fabrication and characterization of porous cordierite ceramics prepared from fly ash and natural minerals, Ceram. Int., 45 (2019) 18306–18314.

    Article  Google Scholar 

  33. M. A. Son, K. W. Chae, J. S. Kim and S. H. Kim, Structural origin of negative thermal expansion of cordierite honeycomb ceramics and crystal phase evolution with sintering temperature, J. Europ. Ceram. Soc., 39 (2019) 2484–2492.

    Article  Google Scholar 

  34. C. L. Thanh, L. V. Tran, T. Q. Bui, H. X. Nguyen and M. Abdel-Wahab, Isogeometric analysis for size-dependent nonlinear thermal stability of porous FG microplates, Composite Structures, 221 (2019) 110838.

    Article  Google Scholar 

  35. P. Phung-Van, C. H. Thai, H. Nguyen-Xuan and M. Abdel-Wahab, An isogeometric approach of static and free vibration analyses for porous FG nanoplates, Europ. J. Mechanics — A/Solids, 78 (2019) 103851.

    Article  MathSciNet  MATH  Google Scholar 

  36. I. A. Abbas and M. I. A. Othman, Generalized thermoelastic interaction in a fiber-reinforced anisotropic half-space under hydrostatic initial stress, J. Vibration and Control, 18 (2012) 175–182.

    Article  MathSciNet  Google Scholar 

  37. I. A. Abbas and H. M. Youssef, A nonlinear generalized thermoelasticity model of temperature-dependent materials using finite element method, Int. J. Thermophys, 33 (2012) 1302–1313.

    Article  Google Scholar 

  38. I. A. Abbas and H. M. Youssef, Two-temperature generalized thermoelasticity under ramp-type heating by finite element method, Meccanica, 48 (2013) 331–339.

    Article  MathSciNet  MATH  Google Scholar 

  39. I. A. Abbas, Nonlinear transient thermal stress analysis of thick-walled FGM cylinder with temperature-dependent material properties, Meccanica, 49 (2014) 1697–1708.

    Article  MATH  Google Scholar 

  40. W. Wisniewski and C. Rüssel, Analysis of the cordierite X-phase and phase transformation by electron backscatter diffraction (EBSD), J. Non-Cryst. Solids, 403 (2014) 124–129.

    Article  Google Scholar 

  41. J. S. O. Evans, T. A. Mary, T. Vogt, M. A. Subramanian and A. W. Sleight, Negative thermal expansion in ZrW2O8 and HfW2O8, Chew. Mater., 8 (1996) 2809–2823.

    Article  Google Scholar 

  42. D. Tauch and C. Rüssel, Glass-ceramics with zero thermal expansion in the system BaO/Al2O3/B2O3, J. Non-Cryst. Solids, 351 (2005) 2294–2298.

    Article  Google Scholar 

  43. C. Thieme, H. Görls and C. Rüssel, Ba1−xSrxZn2Si2O7- a new family of materials with giant negative and very high thermal expansion, Sci. Rep., 5 (2015) 18040.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samah S. Eldera.

Additional information

Conflict of interest

The authors declare no conflict of interest related with this work.

Esmat M. A. Hamzawy was born in Giza, Cairo, Egypt in 1956. He received Bachelor and Master degrees from Geology Department from Cairo University in 1978 and 1992, respectively and Ph.D. degree in 1996 from Geology Dep., Ain Shams University. His main research in material science include glass, glass-ceramic, ceramic, composite, solid state and solgel.

Christian Rüssel was born in Nürnberg, Germany in 1952. He studied chemistry and received Diploma, Dr. rer. nat. and Dr.-Ing.-habil. from University Erlangen-Nürnberg in 1981, 1984 and 1991, respectively. He received Dr. h.c. in 2014 from University of Chemical Technology and Metallurgy, Sofia (Bulgaria). He hold the Chair of Glass Chemistry in Jena University from 1992 to 2018. His research interests are focused on glass and glass-ceramics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eldera, S.S., Al-wafi, R., Al Harbi, O.A. et al. Negative thermal expansion in porous glass-ceramics based on Mg2Al2B2Si5O18 prepared from Saudi raw materials. J Mech Sci Technol 34, 4597–4604 (2020). https://doi.org/10.1007/s12206-020-1017-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-020-1017-3

Keywords

Navigation