Skip to main content
Log in

Crystal elasticity analysis of contact fatigue behavior of a wind turbine gear

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

Rolling contact fatigue is the main factor limiting the service performance of wind turbine gears. The inherent microstructure of the gear material has a significant impact on its contact fatigue behavior and service life. In this research, a two-dimensional contact fatigue model considering the gear material microstructure and the elasticity anisotropy characteristics of the crystals is established. The predicted results reveal a pronounced scatter phenomena of the stress distribution in the subsurface and the localized stress concentration at the grain boundaries caused by crystal elasticity anisotropy. Changes of initial grain orientations can cause a certain fluctuation in the critical stress and its depth in the subsurface. Under the same load level, the gear contact fatigue life calculated by the crystal elasticity anisotropy model is lower compared to isotropic material. Considering the anisotropic properties of the crystal elasticity, an S-N curve based on the maximum contact pressure for the wind turbine gear is drawn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Z 1, Z 2 :

The teeth number

α 0 :

The pressure angle

m 0 :

Gear normal module

B :

Gear tooth width

R 1, R 2 :

Radius at the pitch point

N 1 :

Rated input speed

x 1 , x 2 :

Shifting coefficients

a :

Center distance

C ij :

The crystal elastic constants

Sij :

The constant in the compliance tensor

C local :

The local cubic elasticity stiffness matrix

C global :

The material stiffness matrix in the global coordinate system

R(θ):

The rotation matrix

θ :

The randomly selected rotating Euler angle

E v :

The Young’s modulus calculated by the Voight averaging method

E R :

The Young’s modulus calculated by the Reuss averaging method

E VRH :

The Young’s modulus calculated by the Voigt-Reuss-Hill averaging method

G V :

The shear modulus calculated by the Voight averaging method

G R :

The shear modulus calculated by the Reuss averaging method

G VRH :

The shear modulus calculated by the Voigt-Reuss-Hill averaging method

v V :

The Poisson’s ratio calculated by the Voight averaging method

v R :

The Poisson’s ratio calculated by the Reuss averaging method

v VRH :

The Poisson’s ratio calculated by the Voigt-Reuss-Hill averaging method

E FEM :

The Young’s modulus calculated by the FEM method

v FEM :

The Poisson’s ratio calculated by the FEM method

\(\bar{\sigma}_{ii}\) :

Average stress component in the i direction

\(\bar{\varepsilon}_{11}\) :

The specified strain value in the x direction

Δτ :

The critical stress value

A,B :

Material constants

Δτ GB :

The shear stress reversal along the grain boundary

τf :

Shear fatigue ductility

σf :

The axial fatigue strength coefficients

σ b :

The tensile strength

References

  1. H. He, H. U. Liu, C. Zhu and P. Wei, Study of rolling contact fatigue behavior of a wind turbine gear based on damage-coupled elastic-plastic model, International Journal of Mechanical Sciences (2018) 141.

    Google Scholar 

  2. G. Dvorak, M. Zahui, B. Mitton, S. Kalluri, R. M. Mcgaw, A. Neimitz and S. W. Dean, Development of a sliding-rolling contact fatigue tester, Journal of Astm International, 7 (6) (2010).

    Article  Google Scholar 

  3. I. Boiadjiev, J. Witzig, T. Tobie and K. Stahl, Tooth flank fracture — basic principles and calculation model for a sub surface initiated fatigue failure mode of case hardened gears, International Gear Conference (2014).

  4. T. E. Tallian, A unified model for rolling contact life prediction, Journal of Tribology, 104(3) (1982) 336–346.

    Google Scholar 

  5. F. Sadeghi, B. Jalalahmadi, T. S. Slack, N. Raje and N. K. Arakere, A review of rolling contact fatigue, Journal of Tribology, 131(4) (2009) 041403.

    Article  Google Scholar 

  6. Z. Rahman, H. Ohba, T. Yoshioka and T. Yamamoto, Incipient damage detection and its propagation monitoring of rolling contact fatigue by acoustic emission, Tribology International, 42(6) (2009) 807–815.

    Article  Google Scholar 

  7. A. Warhadpande, F. Sadeghi, M. N. Kotzalas and G. Doll, Effects of plasticity on subsurface initiated spalling in rolling contact fatigue, International Journal of Fatigue, 36(1) (2012) 80–95.

    Article  Google Scholar 

  8. Y.-S. Su, S.-R. Yu, S.-X. Li and Y.-N. He, Review of the damage mechanism in wind turbine gearbox bearings under rolling contact fatigue, Frontiers of Mechanical Engineering (2017).

  9. D. F. Cannon and H. Pradier, Rail rolling contact fatigue research by the european rail research institute, Wear, 191(1–2) (1996) 1–13.

    Article  Google Scholar 

  10. J. H. Kang, B. Hosseinkhani and P. E. J. Riveradiazdelcastillo, Rolling contact fatigue in bearings: Multiscale overview, Materials Science & Technology, 29(11) (2013) 1403–1403.

    Article  Google Scholar 

  11. S. Wang, C. Zhu, C. Song, H. Liu, J. Tan and H. Bai, Effects of gear modifications on the dynamic characteristics of wind turbine gearbox considering elastic support of the gearbox, Journal of Mechanical Science and Technology, 31(3) (2017) 1079–1088.

    Article  Google Scholar 

  12. L. Xu, C. Zhu, H. Liu, G. Chen and W. Long, Dynamic characteristics and experimental study on a wind turbine gearbox, Journal of Mechanical Science and Technology, 33(1) (2019) 393–402.

    Article  Google Scholar 

  13. S. Liu, C. Song, C. Zhu, C. Liang and X. Yang, Investigation on the influence of work holding equipment errors on contact characteristics of face-hobbed hypoid gear, Mechanism and Machine Theory, 138 (2019) 95–111.

    Article  Google Scholar 

  14. C. Zhu, Z. Sun, H. Liu, C. Song and Z. Gu, Effect of tooth profile modification on lubrication performance of a cycloid drive, Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology (2015) 1350650115570402.

  15. M. J. Bryant, H. P. Evans and R. W. Snidle, Plastic deformation in rough surface line contacts-a finite element study, Tribology International, 46(1) (2012) 269–278.

    Article  Google Scholar 

  16. M. Zahui, S. Deshmukh and S. Subedi, Variable slip ratio rolling contact fatigue tester, Journal of Testing and Evaluation, 46(3) (2018) 1042–1053.

    Article  Google Scholar 

  17. H. Liu, C. Zhu, Z. Sun and C. Song, Starved lubrication of a spur gear pair, Tribology International, 94 (2016) 52–60.

    Article  Google Scholar 

  18. M. Ghodrati, M. Ahmadian and R. Mirzaeifar, Modeling of rolling contact fatigue in rails at the microstructural level, Wear (2018).

  19. A. S. Pandkar, N. Arakere and G. Subhash, Microstructure-sensitive accumulation of plastic strain due to ratcheting in bearing steels subject to rolling contact fatigue, International Journal of Fatigue, 63(6) (2014) 191–202.

    Article  Google Scholar 

  20. A. S. Pandkar, N. Arakere and G. Subhash, Ratcheting-based microstructure-sensitive modeling of the cyclic hardening response of case-hardened bearing steels subject to rolling contact fatigue, International Journal of Fatigue, 73 (2015) 119–131.

    Article  Google Scholar 

  21. W. Wang, H. Liu, C. Zhu, P. Bocher, H. Liu and Z. Sun, Evaluation of rolling contact fatigue of a carburized wind turbine gear considering the residual stress and hardness gradient, Journal of Tribology-Transactions of the Asme, 140 (6) (2018).

  22. V. Sakalo, A. Sakalo, S. Tomashevskiy and D. Kerentcev, Computer modelling of process of accumulation of rolling contact fatigue damage in railway wheels, International Journal of Fatigue, 111 (2018) 7–15.

    Article  Google Scholar 

  23. A. Johansson, B. Palsson, M. Ekh, J. C. O. Nielsen, M. K. A. Ander, J. Brouzoulis and E. Kassa, Simulation of wheel-rail contact and damage in switches & crossings, Wear, 271(1–2) (2011) 472–481.

    Article  Google Scholar 

  24. B. Jalalahmadi and F. Sadeghi, A voronoi finite element study of fatigue life scatter in rolling contacts, Journal of Tribology-Transactions of the Asme, 131 (2) (2009).

    Article  Google Scholar 

  25. C. A. Sciammarella, R. J. S. Chen, P. Gallo, F. Berto and L. Lamberti, Experimental evaluation of rolling contact fatigue in railroad wheels, International Journal of Fatigue, 91 (2016) 158–170.

    Article  Google Scholar 

  26. M. Matsui and Y. Kamiya, Evaluation of material deterioration of rails subjected to rolling contact fatigue using x-ray diffraction, Wear, 304(1–2) (2013) 29–35.

    Article  Google Scholar 

  27. X. Gui, K. Wang, G. Gao, R. D. K. Misra, Z. Tan and B. Bai, Rolling contact fatigue of bainitic rail steels: The significance of microstructure, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 657 (2016) 82–85.

    Article  Google Scholar 

  28. Y. Shen, S. M. Moghadam, F. Sadeghi, K. Paulson and R. W. Trice, Effect of retained austenite — Compressive residual stresses on rolling contact fatigue life of carburized AISI 8620 steel, International Journal of Fatigue, 75 (2015) 135–144.

    Article  Google Scholar 

  29. M. Ghodrati, M. Ahmadian and R. Mirzaeifar, Modeling of rolling contact fatigue in rails at the microstructural level, Wear, 406 (2018) 205–217.

    Article  Google Scholar 

  30. M. Sauzay and T. Jourdan, Polycrystalline microstructure, cubic elasticity, and nucleation of high-cycle fatigue cracks, International Journal of Fracture, 141(3–4) (2006) 431–446.

    Article  Google Scholar 

  31. M. Sauzay, Influence of crystalline elasticity anisotropy on Schmid factor distribution at the free surface of polycrystals, Comptes Rendus Mecanique, 334(6) (2006) 353–361.

    Article  Google Scholar 

  32. N. R. Paulson, J. A. R. Bomidi, F. Sadeghi and R. D. Evans, Effects of crystal elasticity on rolling contact fatigue, International Journal of Fatigue, 61 (2014) 67–75.

    Article  Google Scholar 

  33. J. P. Noyel, F. Ville, P. Jacquet, A. Gravouil and C. Change-net, Development of a granular cohesive model for rolling contact fatigue analysis: Crystal anisotropy modeling, Tribology Transactions, 59(3) (2016) 469–479.

    Article  Google Scholar 

  34. K. L. Johnson, Contact Mechanics, UK: Cambridge University Press, Cambridge (1985).

    Book  Google Scholar 

  35. S. Weyer, A. Fröhlich, H. Riesch-Oppermann, L. Cizelj and M. Kovac, Automatic finite element meshing of planar Voronoi tessellations, Engineering Fracture Mechanics, 69(8) (2002) 945–958.

    Article  Google Scholar 

  36. K. C. Liao, Texture development and plastic anisotropy of B.C.C. strain hardening sheet metals, International Journal of Solids & Structures, 35(36) (1998) 5205–5236.

    Article  Google Scholar 

  37. E. S. Alley and R. W. Neu, Microstructure-sensitive modeling of rolling contact fatigue, International Journal of Fatigue, 32(5) (2010) 841–850.

    Article  Google Scholar 

  38. J. M. J. den Toonder, J. A. W. van Dommelen and F. P. T. Baaijens, Relation between single crystal elasticity and the effective elastic behaviour of polycrystalline materials: Theory, measurement and computation, Modelling and Simulation in Materials Science and Engineering, 7(6) (1999) 909.

    Article  Google Scholar 

  39. M. Zhao, X. Han, G. Wang and G. Xu, Determination of the mechanical properties of surface-modified layer of 18CrNiMo7-6 steel alloys after carburizing heat treatment, International Journal of Mechanical Sciences, 148 (2018) 84–93.

    Article  Google Scholar 

  40. J. Kohout and S. Vĕchet, Low-temperature and high-temperature anomalies in temperature shift of stress-lifetime fatigue curves, Materials Science Forum, 567–568 (2008) 113–116.

    Google Scholar 

  41. L. L. Gao, L. Wang, H. Gao, G. Chen and X. Chen, Fatigue life evaluation of anisotropic conductive adhesive film joints under mechanical and hygrothermal loads, Microelectronics Reliability, 51(8) (2011) 1393–1397.

    Article  Google Scholar 

  42. S. I. Marandu, G. Gu and R. Bicker, Experimental and analytical study of surface fatigue life in dental composites, Journal of Composite Materials, 50(16) (2016) 301–301.

    Article  Google Scholar 

  43. J. Kohout, Temperature dependence of stress-lifetime fatigue curves, Fatigue & Fracture of Engineering Materials & Structures, 23(12) (2010) 969–977.

    Article  Google Scholar 

  44. Qiao and Hua, Prediction of Contact Fatigue for the Rough Surface Elastohydrodynamic Lubrication Line Contact Problem under Rolling and Sliding Conditions, Cardiff University (2005).

  45. N. Raje, F. Sadeghi and R. G. Rateick Jr., A statistical damage mechanics model for subsurface initiated spalling in rolling contacts, Journal of Tribology-Transactions of the Asme, 130 (4) (2008).

  46. N. E. Dowling, Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture, and Fatigue, Prentice Hall, 59 (1993).

  47. A. Baumel and T. Seeger, Materials Data for Cyclic Loading—Supplement 1, Elsevier Science Publishing Company (1990).

  48. B. Allison and A. Pandkar, Critical factors for determining a first estimate of fatigue limit of bearing steels under rolling contact fatigue, International Journal of Fatigue, 117 (2018) 396–406.

    Article  Google Scholar 

  49. A. Pandkar and B. Allison, Influence of 2D versus 3D modeling on the fatigue limit calculations of bearing steels during rolling contact fatigue, International Journal for Innovative Research in Science & Technology, 5(6) (2018) 22–30.

    Google Scholar 

  50. A. Bhattacharyya, A. Pandkar, G. Subhash and N. Arakere, Cyclic constitutive response and effective S-N diagram of M50 NiL case-hardened bearing steel subjected to rolling contact fatigue, Journal of Tribology, 137(4) (2015) 041102–041102–15.

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Key R&D Program of China (No. 2018YFB2001300) and National Natural Science Foundation of China (Nos. 51805049 and U1864210) and Chongqing Research Program of Basic Research and Frontier Technology (No. cstc2017jcyjAX0101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peitang Wei.

Ethics declarations

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Recommended by Associate Editor Guangyong Sun

Peitang Wei is the Lecturer of the State Key Laboratory of Mechanical Transmissions, Chongqing University. His research interests involve: gear transmission theory, mesoscopic mechanics modelling of rolling contact fatigue, microstructure characterization and analysis during plastic deformation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Wei, P., Liu, H. et al. Crystal elasticity analysis of contact fatigue behavior of a wind turbine gear. J Mech Sci Technol 33, 4791–4802 (2019). https://doi.org/10.1007/s12206-019-0920-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-019-0920-y

Keywords

Navigation