Skip to main content
Log in

Design of general-purpose assistive exoskeleton robot controller for upper limbs

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

Though research and development on exoskeleton robots have been active recently, the results have limitations in terms of independence from robot platforms and capability for general purposes. This paper presents a novel control scheme named the general-purpose assistive exoskeleton controller (GAEC) for upper limb assistive exoskeleton robots. With only the joint position information used, GAEC is designed to be applicable to any type of upper limb exoskeleton robot platform assisting human worker’s common activities. GAEC works in two modes: (1) An external force is neutralized by generation of force with the same magnitude and the opposite direction. (2) The control system complies with the user’s own force while maintaining the force that compensates for the external force neutralized in the first mode. In addition to theoretical description of the controller, computer simulation was conducted for validation using a robot model adopted from related studies. Two exemplary working scenarios were considered in the simulation: lifting and moving an object, and tightening a bolt with a wrench.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Kiguchi and Q. Quan, Muscle-model-oriented EMG-based control of an upper-limb power-assist exoskeleton with a neuro-fuzzy modifier, IEEE International Conference on Fuzzy Systems (2008) 1179–1184.

    Google Scholar 

  2. T. Koyama, T. Tanaka, S. Kaneko, S. Moromugi and M. Q. Feng, Integral ultrasonic muscle activity sensor for detecting human motion, IEEE International Conference on Systems, Man and Cybernetics (2005) 1669–1674.

    Google Scholar 

  3. Z. Li, Z. Huang, W. He and C. Y. Su, Adaptive impedance control for an upper limb robotic exoskeleton using biological signals, IEEE Transactions on Industrial Electronics, 64(2) (2017) 1664–1674.

    Article  Google Scholar 

  4. H. Choi and S. Lee, Classification of hand postures using forearm perimeter sensor and compensation of residual muscle volume change with sEMG, International Journal of Mechatronics and Automation, 4(4) (2017) 213–221.

    Article  Google Scholar 

  5. L. Peternel, T. Noda, T. Petrič, A. Ude, J. Morimoto and J. Babič, Adaptive control of exoskeleton robots for periodic assistive behaviours based on EMG feedback minimisation, PloS One, 11(2) (2016).

    Google Scholar 

  6. B. Brahim, S. Maarouf, C. O. Luna, B. Abdelkrim and M. H. Rahman, Adaptive iterative observer based on integral backstepping control for upper extremity exoskelton robot, 8th International Conference on Modelling, Identification and Control (2016) 886–891.

    Google Scholar 

  7. A. Ebrahimi, Stuttgart exo-jacket: An exoskeleton for industrial upper body applications, 10th International Conference on Human System Interactions (2017) 258–263.

    Google Scholar 

  8. A. Ebrahimi, D. Gröninger, R. Singer and U. Schneider, Control parameter optimization of the actively powered upper body exoskeleton using subjective feedbacks, 3rd International Conference on Control, Automation and Robotics (2017) 432–437.

    Google Scholar 

  9. J. Garrido, W. Yu and X. Li, Modular design and control of an upper limb exoskeleton, Journal of Mechanical Science and Technology, 30(5) (2016) 2265–2271.

    Article  Google Scholar 

  10. J. Huang, W. Huo, W. Xu, S. Mohammed and Y. Amirat, Control of upper-limb power-assist exoskeleton using a human-robot interface based on motion intention recognition, IEEE Transactions on Automation Science and Engineering, 12(4) (2015) 1257–1270.

    Article  Google Scholar 

  11. H. D. Lee, B. K. Lee, W. S. Kim, J. S. Han, K. S. Shin and C. S. Han, Human-robot cooperation control based on a dynamic model of an upper limb exoskeleton for human power amplification, Mechatronics, 24(2) (2014) 168–176.

    Article  Google Scholar 

  12. T. Madani, B. Daachi and K. Djouani, Modular-controller-design-based fast terminal sliding mode for articulated exoskeleton systems, IEEE Transactions on Control Systems Technology, 25(3) (2017) 1133–1140.

    Article  Google Scholar 

  13. S. Oh, K. Kong and Y. Hori, Design and analysis of force-sensor-less power-assist control, IEEE Transactions on Industrial Electronics, 61(2) (2014) 985–993.

    Article  Google Scholar 

  14. T. Rogge, U. Daub and A. Ebrahimi, Status demonstration of the interdisciplinary development regarding the upper limb exoskeleton. Stuttgart exo-jacket, Internationales Stuttgarter Symposium (2017) 1317–1329.

    Chapter  Google Scholar 

  15. R. Steger, S. H. Kim and H. Kazerooni, Control scheme and networked control architecture for the Berkeley lower extremity exoskeleton (BLEEX), IEEE International Conference on Robotics and Automation (2006) 3469–3476.

    Google Scholar 

  16. A. B. Zoss, H. Kazerooni and A. Chu, Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX), IEEE/ASME Transactions on Mechatronics, 11(2) (2006) 128–138.

    Article  Google Scholar 

  17. J. B. Huang, K. Y. Young and C. H. Ko, Effective control for an upper-body exoskeleton robot using ANFIS, International Conference on System Science and Engineering (2016) 1–4.

    Google Scholar 

  18. K. Kim, K. J. Hong, N. G. Kim and T. K. Kwon, Assistance of the elbow flexion motion on the active elbow orthosis using muscular stiffness force feedback, Journal of Mechanical Science and Technology, 25(12) (2011) 3195–3203.

    Article  Google Scholar 

  19. T. Noda, T. Teramae, B. Ugurlu and J. Morimoto, Development of an upper limb exoskeleton powered via pneumatic electric hybrid actuators with bowden cable, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (2014) 3573–3578.

    Chapter  Google Scholar 

  20. J. C. Perry, J. Rosen and S. Burns, Upper-limb powered exoskeleton design, IEEE/ASME Transactions on Mechatronics, 12(4) (2007) 408–417.

    Article  Google Scholar 

  21. A. Riani, T. Madani, A. El Hadri and A. Benallegue, Adaptive integral terminal sliding mode control of an upper limb exoskeleton, 18th International Conference on Advanced Robotics (2017) 131–136.

    Google Scholar 

  22. H. Seo and S. Lee, Design and experiments of an upperlimb exoskeleton robot, International Conference on Ubiquitous Robots and Ambient Intelligence (2017) 807–808.

    Google Scholar 

  23. F. Xiao, Y. Gao, Y. Wang, Y. Zhu and J. Zhao, Design and evaluation of a 7-DOF cable-driven upper limb exoskeleton, Journal of Mechanical Science and Technology, 32(2) (2018) 855–864.

    Article  Google Scholar 

  24. A. Schiele, Fundamentals of Ergonomic Exoskeleton Robots, Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands (2008).

    Google Scholar 

  25. R. A. R. C. Gopura, D. S. V. Bandara, K. Kiguchi and G. K. I. Mann, Developments in hardware systems of active upperlimb exoskeleton robots: A review, Robotics and Autonomous Systems, 75 (2016) 203–220.

    Article  Google Scholar 

  26. R. A. R. C. Gopura, D. S. V. Bandara, J. M. P. Gunasekara and T. S. S. Jayawardane, Recent trends in EMG-Based control methods for assistive robots, Electrodiagnosis in New frontiers of Clinical Research, InTech (2013) 237–268.

    Google Scholar 

  27. A. Concha, F. E. G. Sánchez, E. R. Velasco, M. Sánchez and S. K. Gadi, Comparison of control algorithms using a generalized model for a human with an exoskeleton, Journal of Applied Science & Process Engineering, 5(1) (2018) 249–255.

    Article  Google Scholar 

  28. C. Dahmen, C. Hölzel, F. Wöllecke and C. Constantinescu, Approach of optimized planning process for exoskeleton centered workplace design, Procedia CIRP, 72 (2018) 1277–1282.

    Article  Google Scholar 

  29. K. S. Stadler and D. Scherly, Exoskeletons in industry: Designs and their potential, 8th International Symposium on Automatic Control, Wismar, Germany (2017).

    Google Scholar 

  30. J. Ortiz, E. Rocon, V. Power, A. de Eyto, L. O’Sullivan, M. Wirz, C Bauer, S. Schülein, K. S. Stadler, B. Mazzolai, W. B. Teeuw, C. Baten, C. Nikamp, J Buurke, F. Thorsteinsson and J. Müller, XoSoft — A vision for a soft modular lower limb exoskeleton, Wearable Robotics: Challenges and Trends, 16 (2017).

    Google Scholar 

  31. R. F. Natividad and C. H. Yeow, Development of a soft robotic shoulder assitive device for shoulder abduction, IEEE International Conference on Biomedical Robotics and Biomechatronics (2016) 989–993.

    Google Scholar 

  32. J. Ortiz, T. Poliero, G. Cairoli, E. Graf and D. G. Caldwell, Energy efficiency analysis and design optimization of an actuation system in a soft modular lower limb exoskeleton, IEEE Robotics and Automation Letters, 3(1) (2018) 484–491.

    Article  Google Scholar 

  33. M. Wehner, B. Quinlivan, P. M Aubin, E. Martinez-Villalpando, M. Baumann, L. Stirling, K. Holt, R. Wood and C. Walsh, A lightweight soft exosuit for gait assistance, IEEE International Conference on Robotics and Automation (2013).

    Google Scholar 

  34. J. Li, Y. Lu, Y. Nan, L. He, X. Wang and D. Niu, A study on posture analysis of assembly line workers in a manufacturing industry, Proceedings of the 20th Congress of the International Ergonomics Association (2018).

    Google Scholar 

  35. S. R. Kamat, N. E. N. Md Zula, N. S. Rayme, S. Shamsuddin and K. Husain, The ergonomics body posture on repetitive and heavy lifting activities of workers in aerospace manufacturing warehouse, IOP Conference Series: Materials Science and Engineering, 210(1) (2017).

    Google Scholar 

  36. N. Sylla, V. Bonnet, F. Colledani and P. Fraisse, Ergonomic contribution of ABLE exoskeleton in automotive industry, International Journal of Industrial Ergonomics, 44(4) (2014), 475–481.

    Article  Google Scholar 

  37. A. Schiele and Gerd Hirzinger, A new generation of ergonomic exoskeletons — The high-performance X-arm-2 for space robotics telepresence, IEEE/RSJ International Conference on Intelligent Robots and Systems (2011) 2158–2165.

    Google Scholar 

  38. Y. Feng, X. Yu and Z. Man, Non-singular terminal sliding mode control of rigid manipulators, Automatica, 38(12) (2002) 2159–2167.

    Article  MathSciNet  MATH  Google Scholar 

  39. S. Venkataraman and S. Gulati, Control of nonlinear systems using terminal sliding modes, Journal of Dynamic Systems, Measurement and Control, 115(3) (1993) 554–560.

    Article  MATH  Google Scholar 

  40. M. Zhihong, A. P. Paplinski and H. R. Wu, A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators, IEEE Transactions on Automatic Control, 39(12) (1994) 2464–2469.

    Article  MathSciNet  MATH  Google Scholar 

  41. K. B. Park and J. J. Lee, A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators-Comments, IEEE Transactions on Automatic Control, 41(5) (1996) 761–762.

    Article  MathSciNet  MATH  Google Scholar 

  42. M. B. R. Neila and D. Tarak, Adaptive terminal sliding mode control for rigid robotic manipulators, International Journal of Automation and Computing, 8(2) (2011) 215–220.

    Article  Google Scholar 

  43. J. J. E. Slotine and W. Li, Applied Nonlinear Control, Prentice hall Englewood Cliffs (1991).

    MATH  Google Scholar 

  44. M. W. Spong, S. Hutchinson and M. Vidyasagar, Robot Modeling and Control, Wiley, New York, USA (2006).

    Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2018R1D1 A1B07047744).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangyoon Lee.

Additional information

Recommended by Editor Ja Choon Koo

Hwiwon Seo received the B.S. degree in mechanical engineering at Konkuk University, Seoul, South Korea in 2017. He is currently pursuing his M.S. degree in mechanical design and production engineering at Konkuk University. His research interests include robotics, control and exoskeleton robots.

Sangyoon Lee received the Ph.D. degree in mechanical engineering at Johns Hopkins University in 2003. Since then, he has been a Professor at Konkuk University. He is serving as a Director for Korean Society of Mechanical Engineers and Korea Robotics Society. His research interests include robotics, control, and printed electronics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, H., Lee, S. Design of general-purpose assistive exoskeleton robot controller for upper limbs. J Mech Sci Technol 33, 3509–3519 (2019). https://doi.org/10.1007/s12206-019-0645-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-019-0645-y

Keywords

Navigation