Skip to main content
Log in

Characterization of atmospheric electrodeless microwave plasma in nitrogen

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

In this study, we investigate atmospheric microwave plasmas produced without electrodes while having a larger plasma volume in pure nitrogen. Optical emission spectroscopy is conducted to measure the translational, rotational, and vibrational temperatures of the plasma. Subsequently, three-temperature plasma kinetic simulations that consider the trans-rotational, vibrational, and electron temperatures separately are developed and conducted to study reaction pathways that sustain the plasma. The translational, rotational, and vibrational temperatures of the plasma are found to be the same and reach approximately 6000 K independent of the flow rate. In the plasma region, the molecular nitrogen is found to be dissociated into atoms to a significant extent because of the high gas temperature, and the plasma is sustained via associative ionizations rather than the electron-impact ionizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. R. Ravishankara, S. Solomon, A. A. Turnipseed and R. F. Warren, Atmospheric lifetimes of long–lived halogenated Species, Science, 259 (5092) (1993) 194–199.

    Article  Google Scholar 

  2. J. Heberlein and A. B. Murphy, Thermal plasma waste treatment, J. Phys. D. Appl. Phys., 41 (5) (2008).

    Google Scholar 

  3. E. Gomez, D. A. Rani, C. R. Cheeseman, D. Deegan, M. Wise and A. R. Boccaccini, Thermal plasma technology for the treatment of wastes: A critical review, J. Hazard. Mater., 161 (2–3) (2009) 614–626.

    Article  Google Scholar 

  4. W. T. Tsai, H.P. Chen and W. Y. Hsien, A review of uses, environmental hazards and recovery/recycle technologies of perfluorocarbons (PFCs) emissions from the semiconductor manufacturing processes, J. Loss Prev. Process Ind., 15 (2) (2002) 65–75.

    Article  Google Scholar 

  5. T. Gierczak, R. Talukdar, G. L. Vaghjiani, E. R. Lovejoy and A. R. Ravishankara, Atmospheric fate of hydrofluoroethanes and hydrofluorochloroethanes: 1. Rate coefficients for reactions with OH, J. Geophys. Res., 96. D3 (1991) 5001–5011.

    Google Scholar 

  6. J. J. Orlando, J. B. Burkholder, S. A. McKeen and A. R. Ravishankara, Atmospheric fate of several hydrofluoroethanes and hydrochloroethanes: 2. UV absorption cross sections and atmospheric lifetimes, J. Geophys. Res., 96 (D3) (1991) 5013–5023.

    Google Scholar 

  7. D. T. Chen, M. M. David, G. V. D. Tiers and J. N. Schroepfer, A carbon arc process for treatment of CF4 Emissions, Environ. Sci. Technol., 32 (20) (1998) 3237–3240.

    Article  Google Scholar 

  8. C. M. Du, J. H. Yan and B. Cheron, Decomposition of toluene in a gliding arc discharge plasma reactor, Plasma Sources Sci. Technol., 16 (4) (2007) 791–797.

    Article  Google Scholar 

  9. H. S. Uhm, Y. C. Hong and D. H. Shin, A microwave plasma torch and its applications, Plasma Sources Sci. Technol., 15 (2) (2006) S26–S34.

    Google Scholar 

  10. H. Sun, J. Lee, H. Do, S. Im and M. S. Bak, Experimental and numerical studies on carbon dioxide decomposition in atmospheric electrodeless microwave plasmas J. Appl. Phys., 122 (2017) 033303.

    Article  Google Scholar 

  11. S. M. Chun, Y. C. Hong and D. H. Choi, Reforming of methane to syngas in a microwave plasma torch at atmospheric pressure, J. CO2 Util., 19 (2017) 221–229.

    Article  Google Scholar 

  12. X. Tao, M. Bai, X. Li, H. Long, S. Shang, Y. Yin and X. Dai, CH4–CO2 reforming by plasma–Challenges and opportunities, Prog. Energy Combust. Sci., 37 (2) (2011) 113–124.

    Article  Google Scholar 

  13. H. S. Uhm, Y. H. Na, Y. C. Hong, D. H. Shin, C. H. Cho and Y. K. Park, High–efficiency gasification of low–grade coal by microwave steam plasma, Energy and Fuels, 28 (7) (2014) 4402–4408.

    Article  Google Scholar 

  14. M. Jasiński, M. Dors, H. Nowakowska, G. V. Nichipor and J. Mizeraczyk, Production of hydrogen via conversion of hydrocarbons using a microwave plasma, J. Phys. D. Appl. Phys., 44 (19) (2011) 194002.

    Article  Google Scholar 

  15. Y. F. Wang, Y. S. You, C. H. Tsai and L. C. Wang, Production of hydrogen by plasma–reforming of methanol, Int. J. Hydrogen Energy, 35 (18) (2010) 9637–9640.

    Article  Google Scholar 

  16. Y. C. Hong, J. H. Kim and H. S. Uhm, Simulated experiment for elimination of chemical and biological warfare agents by making use of microwave plasma torch, Phys. Plasmas, 11 (2) (2004) 830–835.

    Article  Google Scholar 

  17. Y. C. Hong, H. S. Uhm, H. S. Kim, M. J. Kim, S. H. Han, S. C. Ko and S. K. Park, Decomposition of phosgene by microwave plasma–torch generated at atmospheric pressure, IEEE Trans. Plasma Sci., 33 (2) (2005) 958–963.

    Article  Google Scholar 

  18. M. Jasiński, J. Mizeraczyk, Z. Zakrzewski, T. Ohkubo and J. S. Chang, CFC–11 destruction by microwave torch generated atmospheric–pressure nitrogen discharge, J. Phys. D. Appl. Phys., 35 (18) (2002) 2274–2280.

    Article  Google Scholar 

  19. J. Mizeraczyk, M. Jasiński and Z. Zakrzewski, Hazardous gas treatment using atmospheric pressure microwave discharges, Plasma Phys. Control. Fusion, 47 (12 B) (2005).

    Book  Google Scholar 

  20. Y. Ko, G. Yang, D. P. Y. Chang and I. M. Kennedy, Microwave plasma conversion of volatile organic compounds, J. Air Waste Manage. Assoc., 53 (5) (2003) 580–585.

    Article  Google Scholar 

  21. Y. C. Hong and H. S. Uhm, Abatement of CF4 by atmospheric–pressure microwave plasma torch, Phys. Plasmas, 10 (8) (2003) 3410–3414.

    Article  Google Scholar 

  22. H. Kurihara and T. Yajima, Decomposition of toluene by atmospheric pressure microwave plasma generated using metal salt–impregnated carbon felt pieces, Chem. Lett., 36 (4) (2007) 526–527.

    Article  Google Scholar 

  23. M. Leins, L. Alberts, M. Kaiser, M. Walker, A. Schulz, U. Schumacher and U. Stroth, Development and characterisation of a microwave–heated atmospheric plasma torch, Plasma Process. Polym., 6 (S1) (2009) S227–S232.

    Google Scholar 

  24. P. Jamróz, W. Kordylewski and M. Wnukowski, Microwave plasma application in decomposition and steam reforming of model tar compounds, Fuel Process. Technol., 169 (2018) 1–14.

    Article  Google Scholar 

  25. B. A. Wofford, M. W. Jackson, C. Hartz and J. W. Bevan, Surface wave plasma abatement of CHF3 and CF4 containing semiconductor process emissions, Environ. Sci. Technol., 33 (11) (1999) 1892–1897.

    Article  Google Scholar 

  26. J. Lee, H. Sun and M. S. Bak, Formation of nitrogen oxides from atmospheric electrodeless microwave plasmas in nitrogen–oxygen mixtures, J. Appl. Phys., 122 (8) (2017) 083303.

    Article  Google Scholar 

  27. H. Sun, J. Lee, S. Im and M. S. Bak, Optical emission spectroscopic studies on atmospheric electrodeless microwave plasma in carbon dioxide–hydrogen mixture, IEEE Trans. Plasma Sci., 45 (12) (2017) 3154–3159.

    Article  Google Scholar 

  28. J. Torres, J. M. Palomares, A. Sola, J. J. A. M. Van der Mullen and A. Gamero, A Stark broadening method to determine simultaneously the electron temperature and density in high–pressure microwave plasmas, J. Phys. D. Appl. Phys., 40 (19) (2007) 5929–5936.

    Article  Google Scholar 

  29. D. Andrienko, Non–equilibrium models for high temperature gas flows, Ph.D. Thesis, Wright State University (2014).

    Google Scholar 

  30. E. V. Kustova and E. A. Nagnibeda, Kinetic model for multi–temperature flows of reacting carbon dioxide mixture, Chem. Phys., 398 (1) (2012) 111–117.

    Article  Google Scholar 

  31. R. L. Macdonald, A. Munafò, C. O. Johnston and M. Panesi, Nonequilibrium radiation and dissociation of CO molecules in shock–heated flows, Phys. Rev. Fluids, 1 (4) (2016) 043401.

    Article  Google Scholar 

  32. C. Park, Review of chemical–kinetic problems of future NASA missions. I–Earth entries, J. Thermophys. Heat Transf., 7 (3) (1993) 385–398.

    Article  Google Scholar 

  33. G. J. M. Hagelaar and L. C. Pitchford, Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models, Plasma Sources Sci. Technol., 14 (4) (2005) 722–733.

    Article  Google Scholar 

  34. Phelps database, www.lxcat.net, September 29 (2016).

  35. Morgan database, www.lxcat.net, September 29 (2016).

  36. Free program distributed by NASA, www.grc.nasa.gov/WWW/CEAWeb/ceaThermoBuild/htm.

  37. R. N. Gupta, J. M. Yos and R. A. Thompson, A review of reaction rates and thermodynamic and transport properties for an 11–species air model for chemical and thermal nonequilibrium calculations to 30000 K, Nasa Tech. Memo. (1990).

    Google Scholar 

  38. M. Capitelli, C. M. Ferreira, B. F. Gordiets and A. I. Osipov, Plasma kinetics in atmospheric gases, Springer, Berlin (2000).

    Book  Google Scholar 

  39. A. Lifshitz, Correlation of vibrational de–excitation rate constants (k0←1) of diatomic molecules, J. Chem. Phys., 61 (6) (1974) 2478–2479.

    Article  Google Scholar 

  40. A. Fridman, Plasma chemistry, Cambridge University Press, Cambridge (2008).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moon Soo Bak.

Additional information

Recommended by Associate Editor Jeong Park

Hojoong Sun received the B.S. degree from the Mechanical System Design Engineering Department, Kyonggi University, Suwon, South Korea, in 2016. He is currently pursuing the Ph.D. degree with the School of Mechanical Engineering, Sungkyunkwan University, Suwon. His current research interests include fuel reforming, atmospheric pressure plasma and plasma-assisted technologies.

Jungwun Lee received the B.S. degrees in Mechanical Engineering from Sungkyunkwan University in 2017, where he is currently pursuing the M.S. degree with the School of Mechanical Engineering. His research interests include laser-induced plasmas, atmospheric microwave plasmas and plasma-assisted technologies.

Moon Soo Bak received the B.S. degree in mechanical and aerospace engineering from Seoul National University, Seoul, Korea, in 2007 and the M.S. and Ph.D. degrees in mechanical engineering from Stanford University, Stanford, CA, USA, in 2010 and 2014, respectively. He is currently an Assistant Professor with the School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyunggi-do, Republic of Korea. His current research interests include combustion, fluid dynamics, atmospheric pressure plasmas and plasma-assisted combustion.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Lee, J. & Bak, M.S. Characterization of atmospheric electrodeless microwave plasma in nitrogen. J Mech Sci Technol 32, 5999–6007 (2018). https://doi.org/10.1007/s12206-018-1150-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-018-1150-4

Keywords

Navigation