Skip to main content
Log in

Effect of additional diluents on flame propagation speed and markstein length in outwardly propagating premixed methane/ethylene–air flames

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

An experimental study was conducted to understand the effects of additional diluents (CO2 and He) on unstretched flame speed and Markstein length in outwardly propagating spherical premixed CH4/C2H4–air flames at normal temperatures and elevated pressures of up to 0.3 MPa. Laminar burning velocities were measured and compared with predicted ones using reliable reaction mechanisms. The data were first validated by testing linear and nonlinear extrapolation models for premixed methane–air flames. Unstretched laminar burning velocities were presented for premixed methane/ethylene–air flames diluted with CO2 and He on the basis of the optimized range of flame radius and extrapolation model. Three kinetic mechanisms were evaluated and compared with the measured data, and findings showed that Sung Mech was best fitted to the current unstretched flame speeds. Experimentally determined Markstein lengths were compared with theoretically predicted ones by considering the definitions of Lewis (heat-release-weighted, diffusion-based, and volumeweighted) and Zel’dovich numbers (based on a temperature-dependent one). The theoretical Markstein lengths based on a temperaturedependent Zel’dovich number and a heat-release-weighted effective Lewis number agreed best with the experimental data. The capability in predicting theoretical Markstein length with the model of Matalon was better than that with the model of Chen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Lafay, B. Renou, G. Cabot and A. Boukhalfa, Experimental and numerical investigation of the effect of H2 enrichment on laminar methane–air flame thickness, Combust. Flame, 153 (2008) 541–561.

    Article  Google Scholar 

  2. J. S. Kim, J. Park, O. B. Kwon, E. J. Lee, J. H. Yun and S. I. Keel, Preferential diffusion effects in opposed–flow diffusion flame with blended fuels of CH4 and H2, Int. J. Hydrogen Energy, 33 (2008) 842–850.

    Google Scholar 

  3. J. S. Kim, J. Park, O. B. Kwon, D. S. Bae, J. H. Yun and S. I. Keel, A study on flame structure and extinction in downstream interaction between lean premixed CH4–air and (50% H2 + 50% CO) syngas–air flames, Int. J. Hydrogen Energy, 36 (2011) 5717–5728.

    Article  Google Scholar 

  4. J. S. Ha, C. W. Moon, J. Park, J. S. Kim, J. H. Yun and S. I. Keel, A study on flame interaction between methane/air and nitrogen–diluted hydrogen–air premixed flames, Int. J. Hydrogen Energy, 35 (2010) 6992–7001.

    Article  Google Scholar 

  5. F. H. V. Coppens, D. J. Ruyck and A. A. Konnov, The effects of composition on burning velocity and nitric oxide formation in laminar premixed flames of CH4 + H2 + O2 + N2, Combust. Flame, 149 (2007) 409–417.

    Article  Google Scholar 

  6. H. S. Guo, G. J. Smallwood and O. L. Gulder, The effect of reformate gas enrichment on extinction limits and NOX formation in counterflow CH4/air premixed flames, Proc. Combust. Inst., 31 (2007) 1197–1204.

    Article  Google Scholar 

  7. J. Scott, U. S. chemical investment linked to shale gas reaches $100 billion, American Chemical Council, February, USA (2014), <https://www.americanchemistry.com/Media/PressReleasesTranscripts/ACC–news–releases/US–Chemical–Investment–Linked–to–Shale–Gas–Reaches–100–Billion.html>.

    Google Scholar 

  8. W. Liu, A. P. Kelly and C. K. Law, Flame propagation and counterflow nonpremixed ignition of mixtures of methane and ethylene, Combust. Flame, 157 (2010) 1027–1036.

    Article  Google Scholar 

  9. C. G. Fotache, T. G. Kreutz and C. K. Law, Ignition of counterflowing methane versus heated air under reduced and elevated pressures, Combust. Flame, 108 (1997) 442–470.

    Article  Google Scholar 

  10. J. L. Delfau, J. Biet, M. Idir, L. Pillier and C. Vocelle, Experimental and numerical study of premixed, lean ethylene flames, Proc. Combust. Inst., 31 (2007) 357–365.

    Article  Google Scholar 

  11. S. G. Davis and C. K. Law, Determination of and fuel structure effects on laminar flame speeds of C1 to C8 hydrocarbons, Combust. Sci. Technol., 140 (1998) 427–449.

    Article  Google Scholar 

  12. Z. Chen, On the accuracy of laminar flame speeds measured from outwardly propagating spherical flames: Methane/air at normal temperature and pressure, Combust Flame, 162 (2015) 2442–2453.

    Article  Google Scholar 

  13. S. C. Taylor, Burning velocity and the influence of flame stretch, Ph.D. Thesis, University of Leeds (1991).

    Google Scholar 

  14. F. Halter, T. Tahtouh and C. Mounaïm–Rousselle, Nonlinear effects of stretch on the flame front propagation, Combust. Flame, 157 (2010) 1825–1832.

    Article  Google Scholar 

  15. G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. C. Gardiner Jr., V. V. Lissianki and Z. Qin, GRIMECH 3.0, <http://www.me.berkeley.edu/gri_ mech/> (1999).

    Google Scholar 

  16. W. S. Song, S. W. Jung, J. Park, O. B. Kwon, Y. J. Kim, T. H. Kim, J. H. Yun and S. I. Keel, Effects of syngas addition on flame propagation and stability in outwardly propagating spherical dimethyl ether–air premixed flames, Int. J. Hydrogen Energy, 38 (2013) 14102–14114.

    Article  Google Scholar 

  17. R. C. Eschenbach and J. T. Agnew, Use of the constantvolume bomb technique for measuring burning velocity, Combust. Flame, 2 (1958) 273–285.

    Article  Google Scholar 

  18. D. Bradley, R. A. Hicks, M. Lawes, C. G. W. Sheppard and R. Wooley, The measurement of laminar burning velocities and markstein numbers for iso–octane–air and isooctane–n–heptane–air mixtures at elevated temperatures and pressures in an explosion bomb, Combust. Flame, 115 (1998) 126–144.

    Article  Google Scholar 

  19. M. P. Burke, Z. Chen, Y. Ju and F. L. Dryer, Effect of cylindrical confinement on the determination of laminar flame speeds using outwardly propagating flames, Combust. Flame, 156 (2009) 771–779.

    Article  Google Scholar 

  20. Y. Ai, Z. Zhou, Z. Chen and W. Kong, Laminar flame speed and Markstein length of syngas at normal and elevated pressures and temperatures, Fuel, 137 (2014) 339–345.

    Article  Google Scholar 

  21. S. D. Tse, D. L. Zhu and C. K. Law, Morphology and burning rates of expanding spherical flames in H2/O2/inert mixtures up to 60 atmospheres, Proc. Combust. Inst., 28 (2000) 1793–1800.

    Article  Google Scholar 

  22. Z. Chen, X. Qin, Y. Ju, Z. Zhao, M. Chaos and F. L. Dryer, High temperature ignition and combustion enhancement by dimethyl ether addition to methane–air mixtures, Proc. Combust. Inst., 31 (2007) 1215–1222.

    Article  Google Scholar 

  23. X. J. Gu, M. Z. Haq, M. Lawes and R. Woolley, Laminar burning velocity and Markstein lengths of methane–air mixtures, Combust. Flame, 121 (2000) 41–58.

    Article  Google Scholar 

  24. G. Rozenchan, D. L. Zhu, C. K. Law and S. D. Tse, Outward propagation, burning velocities, and chemical effects of methane flames up to 60 atm, Proc. Combust. Inst., 29 (2003) 1461–1470.

    Article  Google Scholar 

  25. F. Halter, C. Chauveau, N. Djebaili–Chaumeix and I. Gokalp, Characterization of the effects of pressure and hydrogen concentration on laminar burning velocities of methane–hydrogen–air mixtures, Proc. Combust. Inst., 30 (2005) 201–208.

    Article  Google Scholar 

  26. C. K. Law and C. J. Sung, Structure, aerodynamics, and geometry of premixed flamelets, Prog. Energy Combust. Sci., 26 (2000) 459–505.

    Article  Google Scholar 

  27. G. H. Markstein, Experimental and theoretical studies of flame–front stability, J. Aeronaut. Sci., 18 (1951) 199–209.

    Article  Google Scholar 

  28. M. L. Frankel and G. I. Sivashinsky, On effects due to thermal expansion and Lewis number in spherical flame propagation, Combust. Sci. Tech., 31 (1983) 131–138.

    Article  Google Scholar 

  29. P. D. Ronney and G. I. Sivashinsky, A theoretical study of propagation and extinction of nonsteady spherical flame fronts, SIAM J. Appl. Math., 49 (1989) 1029–1046.

    Article  MathSciNet  MATH  Google Scholar 

  30. J. K. Bechtold, C. Cui and M. Matalon, The role of radiative losses in self–extinguishing and self–wrinkling flames, Proc. Combust. Inst., 30 (2005) 177–184.

    Article  Google Scholar 

  31. A. P. Kelley and C. K. Law, Nonlinear effects in the extraction of laminar flame speeds from expanding spherical flames, Combust. Flame, 156 (2009) 1844–1851.

    Article  Google Scholar 

  32. M. Matalon and B. J. Matkowsky, Flames as gasdynamic discontinuities, J. Fluid Mech., 124 (1982) 239–259.

    Article  MATH  Google Scholar 

  33. R. Addabbo, J. K. Bechtold and M. Matalon, Wrinkling of spherically expanding flames, Proc. Combust. Int., 29 (2002) 1527–1535.

    Article  Google Scholar 

  34. M. Matalon, Intrinsic flame instabilities in premixed and nonpremixed combustion, Annu. Rev. Fluid Mech., 39 (2007) 163–191.

    Article  MathSciNet  MATH  Google Scholar 

  35. W. S. Jung, J. Park, O. B. Kwon, Y. J. Kim, T. H. Kim and S. I. Keel, Effects of CO2 addition on flame extinction in interacting H2–air and CO–air premixed flames, Fuel, 116 (2014) 69–78.

    Article  Google Scholar 

  36. Z. Chen and Y. Ju, Theoretical analysis of the evolution from ignition kernel to flame ball and planar flame, Combust. Theory. Modelling, 11 (2007) 427–453.

    Article  MathSciNet  MATH  Google Scholar 

  37. F. N. Egolfopulos and C. K. Law, Chain mechanisms in the overall reaction orders in laminar flame propagation, Combust. Flame, 80 (1990) 7–16.

    Article  Google Scholar 

  38. C. K. Law, G. Jomaas and J. K. Bechtold, Cellular instabilities of expanding hydrogen/propane spherical flames at elevated pressures: Theory and experiment, Proc. Combust. Inst., 30 (2005) 159–167.

    Article  Google Scholar 

  39. T. M. Vu, W. S. Song and J. Park, Measurements of propagation speeds and flame instabilities in biomass derived gas–air premixed flames, Int. J. Hydrogen Energy, 36 (2011) 12058–12067.

    Article  Google Scholar 

  40. T. M. Vu, J. Park, J. S. Kim and O. B. Kwon, Experimental study on cellular instabilities in hydrocarbon/hydrogen/car–bon monoxide–air premixed flames, Int. J. Hydrogen Energy, 36 (2011) 6914–6924.

    Article  Google Scholar 

  41. T. M. Vu, J. Park, O. B. Kwon, J. H. Yun and S. I. Keel, Effects of diluents on cellular instabilities in outwardly propagating spherical syngas–air premixed flames, Int. J. Hydrogen Energy, 35 (2010) 3868–3880.

    Article  Google Scholar 

  42. S. P. R. Muppala, M. Nakahara, N. K. Aluri, H. Kido, J. X. Wen and M. V. Papalexandris, Experimental and analytical investigation of the turbulent burning velocity of twocomponent fuel mixtures of hydrogen, methane and propane, Int. J. Hydrogen Energy, 34 (2009) 9258–9265.

    Article  Google Scholar 

  43. N. Bouvet, F. Halter, C. Chauveau and Y. Yoon, On the effective Lewis number formulations for lean hydrogen/hydrocarbon/air mixtures, Int. J. Hydrogen Energy, 38 (2013) 5949–5960.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong Park.

Additional information

Recommended by Editor Yong Tae Kang

Hee Jun Kim obtained a bachelor’s degree at Pukyong National University. He is currently a master course student at Pukyong National University. His research interests include measurements of laminar flame speed, Markstein length, and cellular instability in outwardly propagating spherical flames.

Jeong Park acquired M.S. and Ph.D. degrees at KAIST and joined the Korea Aerospace Research Institute as a Senior Researcher. He is currently a Professor at Pukyong National University, the vicepresident of Korean Society of Combustion, and an editorial board member in Int. J. Spray & Combustion Dynamics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H.J., Van, K., Lee, K.M. et al. Effect of additional diluents on flame propagation speed and markstein length in outwardly propagating premixed methane/ethylene–air flames. J Mech Sci Technol 32, 5501–5509 (2018). https://doi.org/10.1007/s12206-018-1048-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-018-1048-1

Keywords

Navigation