Skip to main content
Log in

Dynamic analysis of a flexure-based compliant stage

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

This paper presents the dynamic analysis of a flexure-based compliant stage. The dynamic model is first obtained, after which the equivalent masses of the flexure hinge, including the axial equivalent mass, the bending equivalent mass, and the shear equivalent mass, are derived. According to this method, the equivalent mass components of the proposed stage are derived by accumulating those of the output platform, input platform, and flexure hinges. Finally, to verify the validity of the proposed method, the first two resonant frequencies and the corresponding mode shapes are analyzed by using finite element analysis (FEA). An experimental platform is fabricated, and experimental results and FEA values appear to be in accordance with the theoretical calculations. This result demonstrates that the dynamic model and equivalent mass are accurate. The dynamic model provides an effective method for calculating equivalent masses, and dynamic characteristics can be precisely estimated from the corresponding analytical models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. T. Elgammal, M. Fanni and A. M. Mohamed, Design and analysis of a novel 3d decoupled manipulator based on compliant pantograph for micromanipulation, J. Intell. Robot. Syst., 87 (1) (2017) 43–57.

    Article  Google Scholar 

  2. J. J. Yu, S. Z. Li, H. J. Su and M. L. Culpepper, Screw theory based methodology for the deterministic type synthesis of flexure mechanisms, J. Mech. Robot., 3 (3) (2011) 031008.

    Article  Google Scholar 

  3. L. Clark, B. Shirinzadeh, J. Pinskier, Y. L. Tian and D. W. Zhang, Topology optimization of bridge input structures with maximal amplification for design of flexure mechanisms, Mech. Mach. Theory., 122 (2018) 113–131.

    Article  Google Scholar 

  4. K. S. Yoo and S. Y. Han, Topology optimum design of compliant mechanisms using modified ant colony optimization, J. Mech. Sci. Technol., 29 (8) (2015) 3321–3327.

    Article  Google Scholar 

  5. M. Liu, X. M. Zhang and S. Fatikow, Design and analysis of a multi–notched flexure hinge for compliant mechanisms, Precis. Eng., 48 (2017) 292–304.

    Article  Google Scholar 

  6. P. Y. Wang and Q. S. Xu, Design of a flexure–based constant–force XY precision positioning stage, Mech. Mach. Theory., 108 (2017) 1–13.

    Article  Google Scholar 

  7. T. Tuma, W. Haeberle, H. Rothuizen, J. Lygeros, A. Pantazi and A. Sebastian, Dual–stage nanopositioning for high–speed scanning probe microscopy, IEEE/ASME Transactions on Mechatronics, 19 (3) (2014) 1035–1045.

    Article  Google Scholar 

  8. Q. S. Xu, Design and development of a compact flexurebased XY precision positioning system with centimeter range, IEEE Trans. Ind. Electron., 61 (2) (2014) 893–903.

    Article  Google Scholar 

  9. I. Ivanov and B. Corves, Fatigue testing of flexure hinges for the purpose of the development of a high–precision micro manipulator, Mech. Sci., 5 (2) (2014) 59–66.

    Article  Google Scholar 

  10. J. J. Yu, Y. Xie, Z. G. Li and G. B. Hao, Design and experimental testing of an improved large–range decoupled XY compliant parallel micromanipulator, J. Mech. Robot., 7 (4) (2015) 044503.

    Article  Google Scholar 

  11. Y. M. Li and Q. S. Xu, Design and analysis of a totally decoupled flexure–based XY parallel micromanipulator, IEEE Trans. Robot., 25 (3) (2009) 645–657.

    Article  Google Scholar 

  12. H. H. Pham and I. M. Chen, Stiffness modeling of flexure parallel mechanism, Precis. Eng., 29 (4) (2005) 467–478.

    Article  Google Scholar 

  13. K. H. Cai, Y. L. Tian, F. J. Wang, D. W. Zhang, X. P. Liu and B. Shirinzadeh, Design and control of a 6–degree–offreedom precision positioning system, Robot. Comput.–Integr. Manuf., 44 (2017) 77–96.

    Article  Google Scholar 

  14. G. B. Hao, Towards the design of monolithic decoupled XYZ compliant parallel mechanisms for multi–function applications, Mech. Sci., 4 (2013) 291–302.

    Article  Google Scholar 

  15. C. M. Liang, F. J. Wang, B. C. Shi, Z. C. Hou, K. H. Zhou, Y. L. Tian and D. W. Zhang, Design and control of a novel asymmetrical piezoelectric actuated micro–gripper for micromanipulation, Sens. Actuator A–Phys., 269 (2018) 227–237.

    Article  Google Scholar 

  16. P. Liu, P. Yan and Z. Zhang, Design and analysis of an XY parallel nano–positioner supporting large–stroke servomechanism, Proceedings of the Institution of Mechanical Engineers, Proc. Inst. Mech. Eng. Part C–J. Eng., 229 (2) (2015) 364–376.

    Article  Google Scholar 

  17. Z. X. Shao, S. L. Wu, J. G. Wu and H. Y. Fu, A novel 5–DOF high–precision compliant parallel mechanism for largeaperture grating tiling, Mech. Sci., 8 (2) (2017) 349.

    Article  Google Scholar 

  18. R. Kurniawan, T. J. Ko, C. P. Li, S. T. Kumaran, G. Kiswanto, P. Guo and K. F. Ehmann, Development of a twofrequency, elliptical–vibration texturing device for surface texturing, J. Mech. Sci. Technol., 31 (7) (2017) 3465–3473.

    Article  Google Scholar 

  19. Y. D. Qin, Y. L. Tian and D. W. Zhang, Design and dynamic modeling of a 2–DOF decoupled flexure–based mechanism, Chin. J. Mech. Eng., 25 (4) (2012) 688–696.

    Article  Google Scholar 

  20. Y. M. Li, J. M. Huang and H. Tang, A compliant parallel XY micromotion stage with complete kinematic decoupling, IEEE Trans. Autom. Sci. Eng., 9 (3) (2012) 538–553.

    Article  Google Scholar 

  21. S. Polit and J. Y. Dong, Development of a high–bandwidth XY nanopositioning stage for high–rate micro–/nanomanufacturing, IEEE/ASME Transactions on Mechatronics, 16 (4) (2011) 724–733.

    Article  Google Scholar 

  22. V. Hassani and T. Tjahjowidodo, Dynamic modeling of 3–DOF pyramidal–shaped piezo–driven mechanism, Mech. Mach. Theory., 70 (2013) 225–245.

    Article  Google Scholar 

  23. H. Kim, J. Kim, D. Ahn and D. Gweon, Development of a nano–precision 3–DOF vertical positioning system with a flexure hinge, IEEE Trans. Nanotechnol., 12 (2) (2013) 234–245.

    Article  Google Scholar 

  24. Y. S. Du, T. M. Li, Yao. Jiang and H. T. Wang, Design and analysis of a 2–degree–of–freedom flexure–based micro–motion stage, Adv. Mech. Eng., 8 (3) (2016) 1687814016638301.

    Article  Google Scholar 

  25. N. Lobontiu, Compliant mechanisms: Design of flexure hinges, CRC Press (2002) 207–251.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunsong Du.

Additional information

Recommended by Associate Editor Hyeong-Joon Ahn

Yunsong Du is a lecturer in College of Mechanical Engineering and Applied Electronics Technology at Beijing University of Technology. He earned his Ph.D. degree in 2017 from Tsinghua University. His research interests lie in flexure-based compliant mechanisms.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Y., Li, T. & Gao, G. Dynamic analysis of a flexure-based compliant stage. J Mech Sci Technol 32, 5223–5231 (2018). https://doi.org/10.1007/s12206-018-1020-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-018-1020-0

Keywords

Navigation