Skip to main content
Log in

Magnetorheological fluid polishing using an electromagnet with straight pole-piece for improving material removal rate

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

Mechanical grinding techniques can cause residual stress, micro-cracks, and work hardening in workpieces. Processes employing magnetorheological (MR) fluid aim to reduce subsurface damage by avoiding the direct application of mechanical force. However, the material removal rate (MRR) achieved with processes such as MR fluid polishing is relatively low. In this study, operating conditions to improve MRR are analyzed using the design of experiments method. Through experiment, and using factorial analysis, it is concluded that MRR depends on magnetic field strength, depth of polishing, and polishing time. Based on these results, a re-designed electromagnet is proposed, analyzed, and tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Li, Z. Wang and Y. Wu, Relationship between subsurface damage and surface roughness of optical materials in grinding and lapping processes, J. Mater. Process. Technol., 205 (2008) 34–41, Doi: 10.1016/j.jmatprotec.2007.11.118.

    Article  Google Scholar 

  2. S. Yin, H. Ohmori, Y. Dai, Y. Uehara, F. Chen and H. Tang, ELID grinding characteristics of glass-ceramic materials, Int. J. Mach. Tools Manuf., 49 (2009) 333–338, Doi: 10.1016/j.ijmachtools.2008.10.013.

    Article  Google Scholar 

  3. H. Tang, Z. H. Deng, Y. S. Guo, J. Qian and D. Reynaerts, Depth-of-cut errors in ELID surface grinding of zirconiabased ceramics, Int. J. Mach. Tools Manuf., 88 (2015) 34–41, Doi: 10.1016/j.ijmachtools.2014.08.003.

    Article  Google Scholar 

  4. J. Chen, Q. Fang and P. Li, Effect of grinding wheel spindle vibration on surface roughness and subsurface damage in brittle material grinding, Int. J. Mach. Tools Manuf., 91 (2015) 12–23, Doi: 10.1016/j.ijmachtools.2015.01.003.

    Article  Google Scholar 

  5. S. D. Jacobs, S. A. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, D. Golini, W. I. Kordonski, P. Dumas and S. Hogan, An overview of magnetorheological finishing (MRF) for precision optics manufacturing, Ceram. Trans., 102 (1999) 185–199.

    Google Scholar 

  6. D. Golini, W. I. Kordonski, P. Dumas and S. J. Hogan, Magnetorheological finishing (MRF) in commercial precision optics manufacturing, Proc. SPIE-Int. Soc. Opt. Eng., 3782 BT-(1999) 80–91, Doi: 10.1117/12.360131.

    Google Scholar 

  7. A. Shorey, W. Kordonski and M. Tricard, Deterministic, precision finishing of domes and conformal optics, Wind. Dome Technol. Mater. IX (2005) 310–318, Doi: 10.1117/12.607456.

    Chapter  Google Scholar 

  8. S. N. Shafrir, J. C. Lambropoulos and S. D. Jacobs, Subsurface damage and microstructure development in precision microground hard ceramics using magnetorheological finishing spots, Appl. Opt., 46 (2007) 5500–5515, Doi: 10.1364/AO.46.005500.

    Article  Google Scholar 

  9. S. R. Arrasmith, S. D. Jacobs, J. C. Lambropoulos, A. Maltsev, D. Golini and W. I. Kordonski, Use of magnetorheological finishing (MRF) to relieve residual stress and subsurface damage on lapped semiconductor silicon wafers, Proc. of International Symposium on Optical Science and Technology (2001) 286–294, Doi.org/10.1117/12.453627.

    Google Scholar 

  10. M. Schinhaerl, C. Vogt, A. Geiss, R. Stamp, P. Sperber, L. Smith, G. Smith and R. Rascher, Forces acting between polishing tool and workpiece surface in magnetorheological finishing, Proc. of SPIE (2008) 706006–706012, http://dx.doi. org/10.1117/12.794196.

    Google Scholar 

  11. T. M. Gurubasavaraju, H. Kumar and M. Arun, Optimization of monotube magnetorheological damper under shear mode, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39 (6) (2017) 2225–2240.

    Article  Google Scholar 

  12. A. B. Shorey, S. D. Jacobs, W. I. Kordonski and R. F. Gans, Experiments and observations regarding the mechanisms of glass removal in magnetorheological finishing, Appl. Opt., 40 (2001) 20–33, Doi: 10.1364/AO.40.000020.

    Article  Google Scholar 

  13. S. D. Jacobs, S. R. Arrasmith, I. A. Kozhinova, S. R. Gorodkin, L. L. Gregg, H. J. Romanofsky, T. D. Bishop, A. B. Shorey and W. I. Kordonski, Effects of changes in fluid composition on magnetorheological finishing (MRF) of glasses and crystals, Initiat. Precis. Eng. Begin. A Millenn. (2001) Japan Soc Precis Engn; Amer Soc Precis Engn; Europ.

    Google Scholar 

  14. K. P. Hong, K. H. Song, M. W. Cho, S. H. Kwon and H. J. Choi, Magnetorheological properties and polishing characteristics of silica-coated carbonyl iron magnetorheological fluid, Journal of Intelligent Material Systems and Structures (2017) 1045389X17730912.

    Google Scholar 

  15. Y. Wang, S. Yin and H. Huang, Polishing characteristics and mechanism in magnetorheological planarization using a permanent magnetic yoke with translational movement, Precis. Eng., 43 (2016) 93–104, Doi: 10.1016/j.precisioneng. 2015.06.014.

    Article  Google Scholar 

  16. Y. Q. Wang, S. H. Yin, H. Huang, F. J. Chen and G. J. Deng, Magnetorheological polishing using a permanent magnetic yoke with straight air gap for ultra-smooth surface planarization, Precis. Eng., 40 (2015) 309–317, Doi: 10.1016/j.precisioneng.2014.11.001.

    Article  Google Scholar 

  17. K. Saraswathamma, S. Jha and P. V. Rao, Design of Parallel plate magnetorheometer for evaluating properties of magnetorheological polishing fluid, Mater. Today Proc., 2 (2015) 3251–3259, Doi: 10.1016/j.matpr.2015.07.134.

    Article  Google Scholar 

  18. K. B. Kim, B. C. Kim, S. J. Ha and M. W. Cho, Effect of pre-treatment polishing on fabrication of anodic aluminum oxide using commercial aluminum alloy, Journal of Mechanical Science and Techonology, 31 (9) (2017) 4387–4393, Doi: 10.1007/s12206-017-0828-1.

    Article  Google Scholar 

  19. J. W. Lee, S. J. Ha, Y. K. Cho, K. B. Kim and M. W. Cho, Investigation of the polishing characteristics of metal materials and development of micro MR fluid jet polishing system for the ultra precision polishing of micro mold pattern, Journal of Mechanical Science and Technology, 29 (5) (2015) 2205–2211, Doi: 10.1007/s12206-015-0136-8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seok Jae Ha.

Additional information

Recommended by Associate Editor In-Ha Sung

Byung-Chan Kim received his M.S. in Mechanical Engineering from Inha University, Incheon, Korea, in 2016. He is currently in doctoral course at the Department of Mechanical Engineering at Inha University. His research interest includes laser polishing and MR fluid polishing.

Seok-Jae Ha received his M.S. and Ph.D. degrees in Mechanical Engineering from Inha University, Incheon, Korea, in 2010 and 2015. He is currently a post-doctoral at the Korea Institute of Industrial Technology (KITECH). His research interest includes cutting monitoring, MR fluid polishing, micro machining, and mask-less digital lithography.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, B.C., Chung, J.H., Cho, M.W. et al. Magnetorheological fluid polishing using an electromagnet with straight pole-piece for improving material removal rate. J Mech Sci Technol 32, 3345–3350 (2018). https://doi.org/10.1007/s12206-018-0637-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-018-0637-3

Keywords

Navigation