Skip to main content
Log in

Numerical studies on two turbulence models and a laminar model for aerodynamics of a vertical-axis wind turbine

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

The purpose of this study is the analysis of flow around a one-bladed Darrieus-type wind turbine using computational fluid dynamics (CFD). The rotor geometry consists of a NACA 0015 airfoil with chord length of 0.15 m. Numerical simulations are performed using ANSYS Fluent, employing laminar model and two turbulence models: SST k-ω and RNG k-ε. The obtained numerical results of unsteady aerodynamic blade loads are compared with available experimental results from literature. Computed aerodynamic characteristics of normal and tangential forces comply with the experiment results. The RNG k-ε turbulence model has a good accuracy in determining aerodynamic blade loads for the upwind and downwind parts of the rotor. The laminar model and the SST k-ω turbulence model slightly overestimate the tangential aerodynamic blade loads at the downwind part of the rotor. An averaged wind turbine velocity profile computed at one rotor radius downstream of the rotor has a Gaussian shape. The steady-state airfoil characteristics are computed for the Reynolds number comparable to the Reynolds number of a moving blade employing the SST k-ω and RNG k-ε turbulence models and using the same computational grid as for unsteady simulations of the rotor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Paraschivoiu, Wind turbine design with emphasis on Darrieus concept, Presses Internationales Polytechnique (2009).

    Google Scholar 

  2. W. Islam, D. Ting and A. Fartaj, Aerodynamic models for Darrieus-type straight-bladed vertical axis wind turbines, Renewable and Sustainable Energy Reviews, 12 (4) (2008) 1087–1109.

    Article  Google Scholar 

  3. R. Wilson and W. McKie, A comparison of aerodynamic analyses for the Darrieus rotor, Wind Energy Conference, Boulder, CO, USA (1980).

    Google Scholar 

  4. C. Ferreira, H. Madsen, M. Barone, B. Roscher, P. Deglaire and I. Arduin, Comparison of aerodynamic models for vertical axis wind turbines, Journal of Physics: Conference Series, 524, 012125 (2014).

    Google Scholar 

  5. J. Johansen and N. N. Sørensen, Airfoil characteristics from 3D CFD rotor computations, Wind Energy, 7 (4) (2004) 283–294.

    Article  Google Scholar 

  6. C. Sicot, P. Devinant, S. Loyer and J. Hureau, Rotational and turbulence effects on a wind turbine blade. Investigation of the stall mechanisms, Journal of Wind Engineering and Industrial Aerodynamics, 96 (8–9) (2008) 1320–1331.

    Article  Google Scholar 

  7. G. Bangga, T. Lutz, E. Jost and E. Krämer, CFD studies on rotational augmentation at the inboard sections of a 10MW wind turbine rotor, Journal of Renewable and Sustainable Energy, 9 (2) (2017) 023304.

    Article  Google Scholar 

  8. G. Bangga, T. Lutz and E. Krämer, Root flow characteristics and 3D effects and 3D effects of an isolated wind turbine rotor, Journal of Mechanical Science and Technology, 31 (8) (2017) 3839–3844.

    Article  Google Scholar 

  9. K. Rogowski, Analysis of performance of the darrieus wind turbines, Ph.D. Thesis, Warsaw University of Technology, Warsaw (2014).

    Google Scholar 

  10. J. H. Strickland, B. T. Webster and T. Nguyen, A vortex model of the darrieus turbine: An analytical and experimental study, Journal of Fluids Engineering, 101 (4) (1979) 500–505.

    Article  Google Scholar 

  11. J. H. Strickland, T. Smith and K. Sun, A vortex model of the darrieus turbine: An analytical and experimental study, Technical Report, SAND 81-7017, Sandia National Laboratories (1981).

    Google Scholar 

  12. J. W. Oler, J. H. Strickland, B. J. Im and G. H. Graham, Dynamic stall regulation of the darrieus turbine, Contractor Report, SAND 83-7029 (1983).

    Book  Google Scholar 

  13. A. Laneville and P. Vittecoq, Dynamic stall: The case of the vertical axis wind turbine, Journal of Solar Energy Engineering, 108 (2) (1986) 140–145.

    Article  Google Scholar 

  14. T. D. Ashwill, Measured data for the Sandia 34-meter vertical axis wind turbine, Report, SAND 91-2228 (1992).

    Google Scholar 

  15. M. H. Worstell, Aerodynamic performance of the 17 meter diameter darrieus wind turbine, Sandia Laboratory Report, SAND 78-1737 (1978).

    Google Scholar 

  16. C. Ferreira, G. van Bussel, G. van Kuik and F. Scarano, On the use of velocity data for load estimation of a VAWT in dynamic stall, Journal of Solar Energy Engineering, 133 (1) (2011) 011006–1-8.

    Article  Google Scholar 

  17. A. Rezaeiha, I. Kalkman and B. Blocken, CFD simulation of a vertical axis wind turbine operating at moderate tip speed ratio: Guidelines for minimum domain size and azimuthal increment, Renewable Energy, 107 (2017) 373–385.

    Article  Google Scholar 

  18. P. Marsh, D. Ranmuthugala, I. Penesis and G. Thomas, Three-dimensional numerical simulations of straight-bladed vertical axis tidal turbines investigating power output, torque ripple and mounting forces, Renewable Energy, 83 (2015) 67–77.

    Article  Google Scholar 

  19. Q. Li, T. Maeda, Y. Kamada, J. Murata, T. Kawabata, K. Shimizu, T. Ogasawara, A. Nakai and T. Kasuya, Wind tunnel and numerical study of a straight-bladed vertical axis wind turbine in three-dimensional analysis (Part II: For predicting flow field and performance), Energy, 104 (2016) 295–307.

    Article  Google Scholar 

  20. G. Bangga, G. Hutomo, R. Wiranegara and H. Sasongko, Numerical study on a single bladed vertical axis wind turbine under dynamic stall, Journal of Mechanical Science and Technology, 31 (1) (2017) 261–267.

    Article  Google Scholar 

  21. A. Allet, S. Hallé and I. Paraschivoiu, Numerical simulation of dynamic stall around an airfoil in darrieus motion, Journal of Solar Energy Engineering, 121 (1) (1999) 69–76.

    Article  Google Scholar 

  22. M. O. L. Hansen and D. N. Søresen, CFD model for vertical axis wind turbine, Proceedings of the 2001 European Wind Energy Conference and Exhibition, Munich: WIPRenewable Energies (2001).

    Google Scholar 

  23. L. A. Danao, N. Qin and R. Howell, A numerical study of blade thickness and camber effects on vertical axis wind turbines, Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 226 (7) (2012) 867–881.

    Google Scholar 

  24. C. Ferreira, H. Bijl, G. van Bussel and G. van Kuik, Simulating dynamic stall in a 2D VAWT: Modeling strategy, verification and validation with particle image velocimetry data, Journal of Physics: Conference Series, 75 012023 (2007).

    Google Scholar 

  25. P. Lichota and D. A. Noreña, A Priori model inclusion in the multisine maneuver design, 17th International Carpathian Control Conference, IEEE, Tatranská Lomnica, Slovakia (2016) 440–445.

    Google Scholar 

  26. P. Lichota and J. Szulczyk, Output error method for tiltrotor unstable in hover, Archive of Mechanical Engineering, 64 (1) (2017) 23–36.

    Article  Google Scholar 

  27. G. Bangga, M. Solichin, A. Daman, D. Sa’adiyah, A. Dessoky and T. Lutz, Aerodynamic performance of a small vertical axis wind turbine using an overset grid method, AIP Conference Proceedings, 1867 (2017) 020005.

    Article  Google Scholar 

  28. K. Rogowski, R. Maroński and J. Piechna, Numerical analysis of a small-size vertical-axis wind turbine performance and averaged flow parameters around the rotor, Archive of Mechanical Engineering, 64 (2) (2017) 205–218.

    Article  Google Scholar 

  29. X. Jin, G. Zhao, K. Gao and W. Ju, Darrieus vertical axis wind turbine: Basic research methods, Renewable and Sustainable Energy Reviews, 42 (2015) 212–225.

    Article  Google Scholar 

  30. S. Miller, Lift, drag, and moment of NACA 0015 airfoil, Thesis, Department of Aerospace Engineering -The Ohio State University (2008).

    Google Scholar 

  31. L. Davidson, An introduction to turbulence models, Chalmers University of Technology publication 97/2 (2003).

    Google Scholar 

  32. F. R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications, AIAA Journal, 32 (8) (1994) 1598–1605.

    Article  Google Scholar 

  33. V. Yakhot, S. A. Orszag, S. Thangam, T. B. Gatski and C. G. Speziale, Development of turbulence models for shear flows by a double expansion technique, Physics of Fluids, 4 (1992) 1510–1520.

    Article  MathSciNet  MATH  Google Scholar 

  34. K. Rogowski, M. O. L. Hansen, R. Maroński and P. Lichota, Scale adaptive simulation model for the darrieus wind turbine, Journal of Physics: Conference Series, 753, 022050 (2016).

    Google Scholar 

  35. G. Bangga, T. Lutz, A. Dessoky and E. Krämer, Unsteady Navier-Stokes studies on loads, wake and dynamic stall characteristics of a two-bladed vertical axis wind turbine, Journal of Renewable and Sustainable Energy, 9 (5) (2017) 053303.

    Article  Google Scholar 

  36. F. Scheurich, T. M. Fletcher and R. E. Brown, Simulating the aerodynamic performance and wake dynamics of a vertical-axis wind turbine, Wind Energy, 14 (2) (2011) 159–177.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Rogowski.

Additional information

Recommended by Associate Editor Donghyun You

Krzysztof Rogowski is working as a Researcher at the Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, Poland. His research interests include aerodynamics of vertical-axis wind turbines, flow separation and airfoil design.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogowski, K. Numerical studies on two turbulence models and a laminar model for aerodynamics of a vertical-axis wind turbine. J Mech Sci Technol 32, 2079–2088 (2018). https://doi.org/10.1007/s12206-018-0417-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-018-0417-0

Keywords

Navigation